/* * Copyright (C) 2001 Anton Blanchard , IBM * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Communication to userspace based on kernel/printk.c */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if 0 #define DEBUG(A...) printk(KERN_ERR A) #else #define DEBUG(A...) #endif static DEFINE_SPINLOCK(rtasd_log_lock); DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait); static char *rtas_log_buf; static unsigned long rtas_log_start; static unsigned long rtas_log_size; static int surveillance_timeout = -1; static unsigned int rtas_event_scan_rate; static unsigned int rtas_error_log_max; static unsigned int rtas_error_log_buffer_max; static int full_rtas_msgs = 0; extern int no_logging; volatile int error_log_cnt = 0; /* * Since we use 32 bit RTAS, the physical address of this must be below * 4G or else bad things happen. Allocate this in the kernel data and * make it big enough. */ static unsigned char logdata[RTAS_ERROR_LOG_MAX]; static int get_eventscan_parms(void); static char *rtas_type[] = { "Unknown", "Retry", "TCE Error", "Internal Device Failure", "Timeout", "Data Parity", "Address Parity", "Cache Parity", "Address Invalid", "ECC Uncorrected", "ECC Corrupted", }; static char *rtas_event_type(int type) { if ((type > 0) && (type < 11)) return rtas_type[type]; switch (type) { case RTAS_TYPE_EPOW: return "EPOW"; case RTAS_TYPE_PLATFORM: return "Platform Error"; case RTAS_TYPE_IO: return "I/O Event"; case RTAS_TYPE_INFO: return "Platform Information Event"; case RTAS_TYPE_DEALLOC: return "Resource Deallocation Event"; case RTAS_TYPE_DUMP: return "Dump Notification Event"; } return rtas_type[0]; } /* To see this info, grep RTAS /var/log/messages and each entry * will be collected together with obvious begin/end. * There will be a unique identifier on the begin and end lines. * This will persist across reboots. * * format of error logs returned from RTAS: * bytes (size) : contents * -------------------------------------------------------- * 0-7 (8) : rtas_error_log * 8-47 (40) : extended info * 48-51 (4) : vendor id * 52-1023 (vendor specific) : location code and debug data */ static void printk_log_rtas(char *buf, int len) { int i,j,n = 0; int perline = 16; char buffer[64]; char * str = "RTAS event"; if (full_rtas_msgs) { printk(RTAS_DEBUG "%d -------- %s begin --------\n", error_log_cnt, str); /* * Print perline bytes on each line, each line will start * with RTAS and a changing number, so syslogd will * print lines that are otherwise the same. Separate every * 4 bytes with a space. */ for (i = 0; i < len; i++) { j = i % perline; if (j == 0) { memset(buffer, 0, sizeof(buffer)); n = sprintf(buffer, "RTAS %d:", i/perline); } if ((i % 4) == 0) n += sprintf(buffer+n, " "); n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]); if (j == (perline-1)) printk(KERN_DEBUG "%s\n", buffer); } if ((i % perline) != 0) printk(KERN_DEBUG "%s\n", buffer); printk(RTAS_DEBUG "%d -------- %s end ----------\n", error_log_cnt, str); } else { struct rtas_error_log *errlog = (struct rtas_error_log *)buf; printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n", error_log_cnt, rtas_event_type(errlog->type), errlog->severity); } } static int log_rtas_len(char * buf) { int len; struct rtas_error_log *err; /* rtas fixed header */ len = 8; err = (struct rtas_error_log *)buf; if (err->extended_log_length) { /* extended header */ len += err->extended_log_length; } if (rtas_error_log_max == 0) { get_eventscan_parms(); } if (len > rtas_error_log_max) len = rtas_error_log_max; return len; } /* * First write to nvram, if fatal error, that is the only * place we log the info. The error will be picked up * on the next reboot by rtasd. If not fatal, run the * method for the type of error. Currently, only RTAS * errors have methods implemented, but in the future * there might be a need to store data in nvram before a * call to panic(). * * XXX We write to nvram periodically, to indicate error has * been written and sync'd, but there is a possibility * that if we don't shutdown correctly, a duplicate error * record will be created on next reboot. */ void pSeries_log_error(char *buf, unsigned int err_type, int fatal) { unsigned long offset; unsigned long s; int len = 0; DEBUG("logging event\n"); if (buf == NULL) return; spin_lock_irqsave(&rtasd_log_lock, s); /* get length and increase count */ switch (err_type & ERR_TYPE_MASK) { case ERR_TYPE_RTAS_LOG: len = log_rtas_len(buf); if (!(err_type & ERR_FLAG_BOOT)) error_log_cnt++; break; case ERR_TYPE_KERNEL_PANIC: default: spin_unlock_irqrestore(&rtasd_log_lock, s); return; } /* Write error to NVRAM */ if (!no_logging && !(err_type & ERR_FLAG_BOOT)) nvram_write_error_log(buf, len, err_type); /* * rtas errors can occur during boot, and we do want to capture * those somewhere, even if nvram isn't ready (why not?), and even * if rtasd isn't ready. Put them into the boot log, at least. */ if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG) printk_log_rtas(buf, len); /* Check to see if we need to or have stopped logging */ if (fatal || no_logging) { no_logging = 1; spin_unlock_irqrestore(&rtasd_log_lock, s); return; } /* call type specific method for error */ switch (err_type & ERR_TYPE_MASK) { case ERR_TYPE_RTAS_LOG: offset = rtas_error_log_buffer_max * ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK); /* First copy over sequence number */ memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int)); /* Second copy over error log data */ offset += sizeof(int); memcpy(&rtas_log_buf[offset], buf, len); if (rtas_log_size < LOG_NUMBER) rtas_log_size += 1; else rtas_log_start += 1; spin_unlock_irqrestore(&rtasd_log_lock, s); wake_up_interruptible(&rtas_log_wait); break; case ERR_TYPE_KERNEL_PANIC: default: spin_unlock_irqrestore(&rtasd_log_lock, s); return; } } static int rtas_log_open(struct inode * inode, struct file * file) { return 0; } static int rtas_log_release(struct inode * inode, struct file * file) { return 0; } /* This will check if all events are logged, if they are then, we * know that we can safely clear the events in NVRAM. * Next we'll sit and wait for something else to log. */ static ssize_t rtas_log_read(struct file * file, char __user * buf, size_t count, loff_t *ppos) { int error; char *tmp; unsigned long s; unsigned long offset; if (!buf || count < rtas_error_log_buffer_max) return -EINVAL; count = rtas_error_log_buffer_max; if (!access_ok(VERIFY_WRITE, buf, count)) return -EFAULT; tmp = kmalloc(count, GFP_KERNEL); if (!tmp) return -ENOMEM; spin_lock_irqsave(&rtasd_log_lock, s); /* if it's 0, then we know we got the last one (the one in NVRAM) */ if (rtas_log_size == 0 && !no_logging) nvram_clear_error_log(); spin_unlock_irqrestore(&rtasd_log_lock, s); error = wait_event_interruptible(rtas_log_wait, rtas_log_size); if (error) goto out; spin_lock_irqsave(&rtasd_log_lock, s); offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK); memcpy(tmp, &rtas_log_buf[offset], count); rtas_log_start += 1; rtas_log_size -= 1; spin_unlock_irqrestore(&rtasd_log_lock, s); error = copy_to_user(buf, tmp, count) ? -EFAULT : count; out: kfree(tmp); return error; } static unsigned int rtas_log_poll(struct file *file, poll_table * wait) { poll_wait(file, &rtas_log_wait, wait); if (rtas_log_size) return POLLIN | POLLRDNORM; return 0; } struct file_operations proc_rtas_log_operations = { .read = rtas_log_read, .poll = rtas_log_poll, .open = rtas_log_open, .release = rtas_log_release, }; static int enable_surveillance(int timeout) { int error; error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout); if (error == 0) return 0; if (error == -EINVAL) { printk(KERN_INFO "rtasd: surveillance not supported\n"); return 0; } printk(KERN_ERR "rtasd: could not update surveillance\n"); return -1; } static int get_eventscan_parms(void) { struct device_node *node; int *ip; node = of_find_node_by_path("/rtas"); ip = (int *)get_property(node, "rtas-event-scan-rate", NULL); if (ip == NULL) { printk(KERN_ERR "rtasd: no rtas-event-scan-rate\n"); of_node_put(node); return -1; } rtas_event_scan_rate = *ip; DEBUG("rtas-event-scan-rate %d\n", rtas_event_scan_rate); /* Make room for the sequence number */ rtas_error_log_max = rtas_get_error_log_max(); rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int); of_node_put(node); return 0; } static void do_event_scan(int event_scan) { int error; do { memset(logdata, 0, rtas_error_log_max); error = rtas_call(event_scan, 4, 1, NULL, RTAS_EVENT_SCAN_ALL_EVENTS, 0, __pa(logdata), rtas_error_log_max); if (error == -1) { printk(KERN_ERR "event-scan failed\n"); break; } if (error == 0) pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0); } while(error == 0); } static void do_event_scan_all_cpus(long delay) { int cpu; lock_cpu_hotplug(); cpu = first_cpu(cpu_online_map); for (;;) { set_cpus_allowed(current, cpumask_of_cpu(cpu)); do_event_scan(rtas_token("event-scan")); set_cpus_allowed(current, CPU_MASK_ALL); /* Drop hotplug lock, and sleep for the specified delay */ unlock_cpu_hotplug(); msleep_interruptible(delay); lock_cpu_hotplug(); cpu = next_cpu(cpu, cpu_online_map); if (cpu == NR_CPUS) break; } unlock_cpu_hotplug(); } static int rtasd(void *unused) { unsigned int err_type; int event_scan = rtas_token("event-scan"); int rc; daemonize("rtasd"); if (event_scan == RTAS_UNKNOWN_SERVICE || get_eventscan_parms() == -1) goto error; rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER); if (!rtas_log_buf) { printk(KERN_ERR "rtasd: no memory\n"); goto error; } printk(KERN_INFO "RTAS daemon started\n"); DEBUG("will sleep for %d milliseconds\n", (30000/rtas_event_scan_rate)); /* See if we have any error stored in NVRAM */ memset(logdata, 0, rtas_error_log_max); rc = nvram_read_error_log(logdata, rtas_error_log_max, &err_type); /* We can use rtas_log_buf now */ no_logging = 0; if (!rc) { if (err_type != ERR_FLAG_ALREADY_LOGGED) { pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0); } } /* First pass. */ do_event_scan_all_cpus(1000); if (surveillance_timeout != -1) { DEBUG("enabling surveillance\n"); enable_surveillance(surveillance_timeout); DEBUG("surveillance enabled\n"); } /* Delay should be at least one second since some * machines have problems if we call event-scan too * quickly. */ for (;;) do_event_scan_all_cpus(30000/rtas_event_scan_rate); error: /* Should delete proc entries */ return -EINVAL; } static int __init rtas_init(void) { struct proc_dir_entry *entry; /* No RTAS, only warn if we are on a pSeries box */ if (rtas_token("event-scan") == RTAS_UNKNOWN_SERVICE) { if (systemcfg->platform & PLATFORM_PSERIES) printk(KERN_INFO "rtasd: no event-scan on system\n"); return 1; } entry = create_proc_entry("ppc64/rtas/error_log", S_IRUSR, NULL); if (entry) entry->proc_fops = &proc_rtas_log_operations; else printk(KERN_ERR "Failed to create error_log proc entry\n"); if (kernel_thread(rtasd, NULL, CLONE_FS) < 0) printk(KERN_ERR "Failed to start RTAS daemon\n"); return 0; } static int __init surveillance_setup(char *str) { int i; if (get_option(&str,&i)) { if (i >= 0 && i <= 255) surveillance_timeout = i; } return 1; } static int __init rtasmsgs_setup(char *str) { if (strcmp(str, "on") == 0) full_rtas_msgs = 1; else if (strcmp(str, "off") == 0) full_rtas_msgs = 0; return 1; } __initcall(rtas_init); __setup("surveillance=", surveillance_setup); __setup("rtasmsgs=", rtasmsgs_setup);