/* * * Procedures for interfacing to the RTAS on CHRP machines. * * Peter Bergner, IBM March 2001. * Copyright (C) 2001 IBM. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct flash_block_list_header rtas_firmware_flash_list = {0, NULL}; struct rtas_t rtas = { .lock = SPIN_LOCK_UNLOCKED }; EXPORT_SYMBOL(rtas); char rtas_err_buf[RTAS_ERROR_LOG_MAX]; DEFINE_SPINLOCK(rtas_data_buf_lock); char rtas_data_buf[RTAS_DATA_BUF_SIZE]__page_aligned; unsigned long rtas_rmo_buf; void call_rtas_display_status(unsigned char c) { struct rtas_args *args = &rtas.args; unsigned long s; if (!rtas.base) return; spin_lock_irqsave(&rtas.lock, s); args->token = 10; args->nargs = 1; args->nret = 1; args->rets = (rtas_arg_t *)&(args->args[1]); args->args[0] = (int)c; enter_rtas(__pa(args)); spin_unlock_irqrestore(&rtas.lock, s); } void call_rtas_display_status_delay(unsigned char c) { static int pending_newline = 0; /* did last write end with unprinted newline? */ static int width = 16; if (c == '\n') { while (width-- > 0) call_rtas_display_status(' '); width = 16; udelay(500000); pending_newline = 1; } else { if (pending_newline) { call_rtas_display_status('\r'); call_rtas_display_status('\n'); } pending_newline = 0; if (width--) { call_rtas_display_status(c); udelay(10000); } } } void rtas_progress(char *s, unsigned short hex) { struct device_node *root; int width, *p; char *os; static int display_character, set_indicator; static int display_width, display_lines, *row_width, form_feed; static DEFINE_SPINLOCK(progress_lock); static int current_line; static int pending_newline = 0; /* did last write end with unprinted newline? */ if (!rtas.base) return; if (display_width == 0) { display_width = 0x10; if ((root = find_path_device("/rtas"))) { if ((p = (unsigned int *)get_property(root, "ibm,display-line-length", NULL))) display_width = *p; if ((p = (unsigned int *)get_property(root, "ibm,form-feed", NULL))) form_feed = *p; if ((p = (unsigned int *)get_property(root, "ibm,display-number-of-lines", NULL))) display_lines = *p; row_width = (unsigned int *)get_property(root, "ibm,display-truncation-length", NULL); } display_character = rtas_token("display-character"); set_indicator = rtas_token("set-indicator"); } if (display_character == RTAS_UNKNOWN_SERVICE) { /* use hex display if available */ if (set_indicator != RTAS_UNKNOWN_SERVICE) rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex); return; } spin_lock(&progress_lock); /* * Last write ended with newline, but we didn't print it since * it would just clear the bottom line of output. Print it now * instead. * * If no newline is pending and form feed is supported, clear the * display with a form feed; otherwise, print a CR to start output * at the beginning of the line. */ if (pending_newline) { rtas_call(display_character, 1, 1, NULL, '\r'); rtas_call(display_character, 1, 1, NULL, '\n'); pending_newline = 0; } else { current_line = 0; if (form_feed) rtas_call(display_character, 1, 1, NULL, (char)form_feed); else rtas_call(display_character, 1, 1, NULL, '\r'); } if (row_width) width = row_width[current_line]; else width = display_width; os = s; while (*os) { if (*os == '\n' || *os == '\r') { /* If newline is the last character, save it * until next call to avoid bumping up the * display output. */ if (*os == '\n' && !os[1]) { pending_newline = 1; current_line++; if (current_line > display_lines-1) current_line = display_lines-1; spin_unlock(&progress_lock); return; } /* RTAS wants CR-LF, not just LF */ if (*os == '\n') { rtas_call(display_character, 1, 1, NULL, '\r'); rtas_call(display_character, 1, 1, NULL, '\n'); } else { /* CR might be used to re-draw a line, so we'll * leave it alone and not add LF. */ rtas_call(display_character, 1, 1, NULL, *os); } if (row_width) width = row_width[current_line]; else width = display_width; } else { width--; rtas_call(display_character, 1, 1, NULL, *os); } os++; /* if we overwrite the screen length */ if (width <= 0) while ((*os != 0) && (*os != '\n') && (*os != '\r')) os++; } spin_unlock(&progress_lock); } int rtas_token(const char *service) { int *tokp; if (rtas.dev == NULL) { PPCDBG(PPCDBG_RTAS,"\tNo rtas device in device-tree...\n"); return RTAS_UNKNOWN_SERVICE; } tokp = (int *) get_property(rtas.dev, service, NULL); return tokp ? *tokp : RTAS_UNKNOWN_SERVICE; } /* * Return the firmware-specified size of the error log buffer * for all rtas calls that require an error buffer argument. * This includes 'check-exception' and 'rtas-last-error'. */ int rtas_get_error_log_max(void) { static int rtas_error_log_max; if (rtas_error_log_max) return rtas_error_log_max; rtas_error_log_max = rtas_token ("rtas-error-log-max"); if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) || (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) { printk (KERN_WARNING "RTAS: bad log buffer size %d\n", rtas_error_log_max); rtas_error_log_max = RTAS_ERROR_LOG_MAX; } return rtas_error_log_max; } /** Return a copy of the detailed error text associated with the * most recent failed call to rtas. Because the error text * might go stale if there are any other intervening rtas calls, * this routine must be called atomically with whatever produced * the error (i.e. with rtas.lock still held from the previous call). */ static int __fetch_rtas_last_error(void) { struct rtas_args err_args, save_args; u32 bufsz; bufsz = rtas_get_error_log_max(); err_args.token = rtas_token("rtas-last-error"); err_args.nargs = 2; err_args.nret = 1; err_args.args[0] = (rtas_arg_t)__pa(rtas_err_buf); err_args.args[1] = bufsz; err_args.args[2] = 0; save_args = rtas.args; rtas.args = err_args; enter_rtas(__pa(&rtas.args)); err_args = rtas.args; rtas.args = save_args; return err_args.args[2]; } int rtas_call(int token, int nargs, int nret, int *outputs, ...) { va_list list; int i, logit = 0; unsigned long s; struct rtas_args *rtas_args; char * buff_copy = NULL; int ret; PPCDBG(PPCDBG_RTAS, "Entering rtas_call\n"); PPCDBG(PPCDBG_RTAS, "\ttoken = 0x%x\n", token); PPCDBG(PPCDBG_RTAS, "\tnargs = %d\n", nargs); PPCDBG(PPCDBG_RTAS, "\tnret = %d\n", nret); PPCDBG(PPCDBG_RTAS, "\t&outputs = 0x%lx\n", outputs); if (token == RTAS_UNKNOWN_SERVICE) return -1; /* Gotta do something different here, use global lock for now... */ spin_lock_irqsave(&rtas.lock, s); rtas_args = &rtas.args; rtas_args->token = token; rtas_args->nargs = nargs; rtas_args->nret = nret; rtas_args->rets = (rtas_arg_t *)&(rtas_args->args[nargs]); va_start(list, outputs); for (i = 0; i < nargs; ++i) { rtas_args->args[i] = va_arg(list, rtas_arg_t); PPCDBG(PPCDBG_RTAS, "\tnarg[%d] = 0x%x\n", i, rtas_args->args[i]); } va_end(list); for (i = 0; i < nret; ++i) rtas_args->rets[i] = 0; PPCDBG(PPCDBG_RTAS, "\tentering rtas with 0x%lx\n", __pa(rtas_args)); enter_rtas(__pa(rtas_args)); PPCDBG(PPCDBG_RTAS, "\treturned from rtas ...\n"); /* A -1 return code indicates that the last command couldn't be completed due to a hardware error. */ if (rtas_args->rets[0] == -1) logit = (__fetch_rtas_last_error() == 0); ifppcdebug(PPCDBG_RTAS) { for(i=0; i < nret ;i++) udbg_printf("\tnret[%d] = 0x%lx\n", i, (ulong)rtas_args->rets[i]); } if (nret > 1 && outputs != NULL) for (i = 0; i < nret-1; ++i) outputs[i] = rtas_args->rets[i+1]; ret = (nret > 0)? rtas_args->rets[0]: 0; /* Log the error in the unlikely case that there was one. */ if (unlikely(logit)) { buff_copy = rtas_err_buf; if (mem_init_done) { buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); if (buff_copy) memcpy(buff_copy, rtas_err_buf, RTAS_ERROR_LOG_MAX); } } /* Gotta do something different here, use global lock for now... */ spin_unlock_irqrestore(&rtas.lock, s); if (buff_copy) { log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); if (mem_init_done) kfree(buff_copy); } return ret; } /* Given an RTAS status code of 990n compute the hinted delay of 10^n * (last digit) milliseconds. For now we bound at n=5 (100 sec). */ unsigned int rtas_extended_busy_delay_time(int status) { int order = status - 9900; unsigned long ms; if (order < 0) order = 0; /* RTC depends on this for -2 clock busy */ else if (order > 5) order = 5; /* bound */ /* Use microseconds for reasonable accuracy */ for (ms=1; order > 0; order--) ms *= 10; return ms; } int rtas_error_rc(int rtas_rc) { int rc; switch (rtas_rc) { case -1: /* Hardware Error */ rc = -EIO; break; case -3: /* Bad indicator/domain/etc */ rc = -EINVAL; break; case -9000: /* Isolation error */ rc = -EFAULT; break; case -9001: /* Outstanding TCE/PTE */ rc = -EEXIST; break; case -9002: /* No usable slot */ rc = -ENODEV; break; default: printk(KERN_ERR "%s: unexpected RTAS error %d\n", __FUNCTION__, rtas_rc); rc = -ERANGE; break; } return rc; } int rtas_get_power_level(int powerdomain, int *level) { int token = rtas_token("get-power-level"); int rc; if (token == RTAS_UNKNOWN_SERVICE) return -ENOENT; while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) udelay(1); if (rc < 0) return rtas_error_rc(rc); return rc; } int rtas_set_power_level(int powerdomain, int level, int *setlevel) { int token = rtas_token("set-power-level"); unsigned int wait_time; int rc; if (token == RTAS_UNKNOWN_SERVICE) return -ENOENT; while (1) { rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); if (rc == RTAS_BUSY) udelay(1); else if (rtas_is_extended_busy(rc)) { wait_time = rtas_extended_busy_delay_time(rc); udelay(wait_time * 1000); } else break; } if (rc < 0) return rtas_error_rc(rc); return rc; } int rtas_get_sensor(int sensor, int index, int *state) { int token = rtas_token("get-sensor-state"); unsigned int wait_time; int rc; if (token == RTAS_UNKNOWN_SERVICE) return -ENOENT; while (1) { rc = rtas_call(token, 2, 2, state, sensor, index); if (rc == RTAS_BUSY) udelay(1); else if (rtas_is_extended_busy(rc)) { wait_time = rtas_extended_busy_delay_time(rc); udelay(wait_time * 1000); } else break; } if (rc < 0) return rtas_error_rc(rc); return rc; } int rtas_set_indicator(int indicator, int index, int new_value) { int token = rtas_token("set-indicator"); unsigned int wait_time; int rc; if (token == RTAS_UNKNOWN_SERVICE) return -ENOENT; while (1) { rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); if (rc == RTAS_BUSY) udelay(1); else if (rtas_is_extended_busy(rc)) { wait_time = rtas_extended_busy_delay_time(rc); udelay(wait_time * 1000); } else break; } if (rc < 0) return rtas_error_rc(rc); return rc; } #define FLASH_BLOCK_LIST_VERSION (1UL) static void rtas_flash_firmware(void) { unsigned long image_size; struct flash_block_list *f, *next, *flist; unsigned long rtas_block_list; int i, status, update_token; update_token = rtas_token("ibm,update-flash-64-and-reboot"); if (update_token == RTAS_UNKNOWN_SERVICE) { printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot is not available -- not a service partition?\n"); printk(KERN_ALERT "FLASH: firmware will not be flashed\n"); return; } /* NOTE: the "first" block list is a global var with no data * blocks in the kernel data segment. We do this because * we want to ensure this block_list addr is under 4GB. */ rtas_firmware_flash_list.num_blocks = 0; flist = (struct flash_block_list *)&rtas_firmware_flash_list; rtas_block_list = virt_to_abs(flist); if (rtas_block_list >= 4UL*1024*1024*1024) { printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n"); return; } printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n"); /* Update the block_list in place. */ image_size = 0; for (f = flist; f; f = next) { /* Translate data addrs to absolute */ for (i = 0; i < f->num_blocks; i++) { f->blocks[i].data = (char *)virt_to_abs(f->blocks[i].data); image_size += f->blocks[i].length; } next = f->next; /* Don't translate NULL pointer for last entry */ if (f->next) f->next = (struct flash_block_list *)virt_to_abs(f->next); else f->next = NULL; /* make num_blocks into the version/length field */ f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16); } printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size); printk(KERN_ALERT "FLASH: performing flash and reboot\n"); rtas_progress("Flashing \n", 0x0); rtas_progress("Please Wait... ", 0x0); printk(KERN_ALERT "FLASH: this will take several minutes. Do not power off!\n"); status = rtas_call(update_token, 1, 1, NULL, rtas_block_list); switch (status) { /* should only get "bad" status */ case 0: printk(KERN_ALERT "FLASH: success\n"); break; case -1: printk(KERN_ALERT "FLASH: hardware error. Firmware may not be not flashed\n"); break; case -3: printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform. Firmware not flashed\n"); break; case -4: printk(KERN_ALERT "FLASH: flash failed when partially complete. System may not reboot\n"); break; default: printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status); break; } } void rtas_flash_bypass_warning(void) { printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n"); printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n"); } void rtas_restart(char *cmd) { if (rtas_firmware_flash_list.next) rtas_flash_firmware(); printk("RTAS system-reboot returned %d\n", rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); for (;;); } void rtas_power_off(void) { if (rtas_firmware_flash_list.next) rtas_flash_bypass_warning(); /* allow power on only with power button press */ printk("RTAS power-off returned %d\n", rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); for (;;); } void rtas_halt(void) { if (rtas_firmware_flash_list.next) rtas_flash_bypass_warning(); rtas_power_off(); } /* Must be in the RMO region, so we place it here */ static char rtas_os_term_buf[2048]; void rtas_os_term(char *str) { int status; if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term")) return; snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); do { status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, __pa(rtas_os_term_buf)); if (status == RTAS_BUSY) udelay(1); else if (status != 0) printk(KERN_EMERG "ibm,os-term call failed %d\n", status); } while (status == RTAS_BUSY); } asmlinkage int ppc_rtas(struct rtas_args __user *uargs) { struct rtas_args args; unsigned long flags; char * buff_copy; int nargs; int err_rc = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) return -EFAULT; nargs = args.nargs; if (nargs > ARRAY_SIZE(args.args) || args.nret > ARRAY_SIZE(args.args) || nargs + args.nret > ARRAY_SIZE(args.args)) return -EINVAL; /* Copy in args. */ if (copy_from_user(args.args, uargs->args, nargs * sizeof(rtas_arg_t)) != 0) return -EFAULT; buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL); spin_lock_irqsave(&rtas.lock, flags); rtas.args = args; enter_rtas(__pa(&rtas.args)); args = rtas.args; args.rets = &args.args[nargs]; /* A -1 return code indicates that the last command couldn't be completed due to a hardware error. */ if (args.rets[0] == -1) { err_rc = __fetch_rtas_last_error(); if ((err_rc == 0) && buff_copy) { memcpy(buff_copy, rtas_err_buf, RTAS_ERROR_LOG_MAX); } } spin_unlock_irqrestore(&rtas.lock, flags); if (buff_copy) { if ((args.rets[0] == -1) && (err_rc == 0)) { log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); } kfree(buff_copy); } /* Copy out args. */ if (copy_to_user(uargs->args + nargs, args.args + nargs, args.nret * sizeof(rtas_arg_t)) != 0) return -EFAULT; return 0; } /* This version can't take the spinlock, because it never returns */ struct rtas_args rtas_stop_self_args = { /* The token is initialized for real in setup_system() */ .token = RTAS_UNKNOWN_SERVICE, .nargs = 0, .nret = 1, .rets = &rtas_stop_self_args.args[0], }; void rtas_stop_self(void) { struct rtas_args *rtas_args = &rtas_stop_self_args; local_irq_disable(); BUG_ON(rtas_args->token == RTAS_UNKNOWN_SERVICE); printk("cpu %u (hwid %u) Ready to die...\n", smp_processor_id(), hard_smp_processor_id()); enter_rtas(__pa(rtas_args)); panic("Alas, I survived.\n"); } /* * Call early during boot, before mem init or bootmem, to retreive the RTAS * informations from the device-tree and allocate the RMO buffer for userland * accesses. */ void __init rtas_initialize(void) { /* Get RTAS dev node and fill up our "rtas" structure with infos * about it. */ rtas.dev = of_find_node_by_name(NULL, "rtas"); if (rtas.dev) { u32 *basep, *entryp; u32 *sizep; basep = (u32 *)get_property(rtas.dev, "linux,rtas-base", NULL); sizep = (u32 *)get_property(rtas.dev, "rtas-size", NULL); if (basep != NULL && sizep != NULL) { rtas.base = *basep; rtas.size = *sizep; entryp = (u32 *)get_property(rtas.dev, "linux,rtas-entry", NULL); if (entryp == NULL) /* Ugh */ rtas.entry = rtas.base; else rtas.entry = *entryp; } else rtas.dev = NULL; } /* If RTAS was found, allocate the RMO buffer for it and look for * the stop-self token if any */ if (rtas.dev) { unsigned long rtas_region = RTAS_INSTANTIATE_MAX; if (systemcfg->platform == PLATFORM_PSERIES_LPAR) rtas_region = min(lmb.rmo_size, RTAS_INSTANTIATE_MAX); rtas_rmo_buf = lmb_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE, rtas_region); #ifdef CONFIG_HOTPLUG_CPU rtas_stop_self_args.token = rtas_token("stop-self"); #endif /* CONFIG_HOTPLUG_CPU */ } } EXPORT_SYMBOL(rtas_firmware_flash_list); EXPORT_SYMBOL(rtas_token); EXPORT_SYMBOL(rtas_call); EXPORT_SYMBOL(rtas_data_buf); EXPORT_SYMBOL(rtas_data_buf_lock); EXPORT_SYMBOL(rtas_extended_busy_delay_time); EXPORT_SYMBOL(rtas_get_sensor); EXPORT_SYMBOL(rtas_get_power_level); EXPORT_SYMBOL(rtas_set_power_level); EXPORT_SYMBOL(rtas_set_indicator); EXPORT_SYMBOL(rtas_get_error_log_max);