/* * * * Procedures for interfacing to Open Firmware. * * Paul Mackerras August 1996. * Copyright (C) 1996 Paul Mackerras. * * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. * {engebret|bergner}@us.ibm.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #undef DEBUG_PROM #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_LOGO_LINUX_CLUT224 #include extern const struct linux_logo logo_linux_clut224; #endif /* * Properties whose value is longer than this get excluded from our * copy of the device tree. This value does need to be big enough to * ensure that we don't lose things like the interrupt-map property * on a PCI-PCI bridge. */ #define MAX_PROPERTY_LENGTH (1UL * 1024 * 1024) /* * Eventually bump that one up */ #define DEVTREE_CHUNK_SIZE 0x100000 /* * This is the size of the local memory reserve map that gets copied * into the boot params passed to the kernel. That size is totally * flexible as the kernel just reads the list until it encounters an * entry with size 0, so it can be changed without breaking binary * compatibility */ #define MEM_RESERVE_MAP_SIZE 8 /* * prom_init() is called very early on, before the kernel text * and data have been mapped to KERNELBASE. At this point the code * is running at whatever address it has been loaded at, so * references to extern and static variables must be relocated * explicitly. The procedure reloc_offset() returns the address * we're currently running at minus the address we were linked at. * (Note that strings count as static variables.) * * Because OF may have mapped I/O devices into the area starting at * KERNELBASE, particularly on CHRP machines, we can't safely call * OF once the kernel has been mapped to KERNELBASE. Therefore all * OF calls should be done within prom_init(), and prom_init() * and all routines called within it must be careful to relocate * references as necessary. * * Note that the bss is cleared *after* prom_init runs, so we have * to make sure that any static or extern variables it accesses * are put in the data segment. */ #define PROM_BUG() do { \ prom_printf("kernel BUG at %s line 0x%x!\n", \ RELOC(__FILE__), __LINE__); \ __asm__ __volatile__(".long " BUG_ILLEGAL_INSTR); \ } while (0) #ifdef DEBUG_PROM #define prom_debug(x...) prom_printf(x) #else #define prom_debug(x...) #endif typedef u32 prom_arg_t; struct prom_args { u32 service; u32 nargs; u32 nret; prom_arg_t args[10]; prom_arg_t *rets; /* Pointer to return values in args[16]. */ }; struct prom_t { unsigned long entry; ihandle root; ihandle chosen; int cpu; ihandle stdout; ihandle disp_node; struct prom_args args; unsigned long version; unsigned long root_size_cells; unsigned long root_addr_cells; }; struct pci_reg_property { struct pci_address addr; u32 size_hi; u32 size_lo; }; struct mem_map_entry { u64 base; u64 size; }; typedef u32 cell_t; extern void __start(unsigned long r3, unsigned long r4, unsigned long r5); extern void enter_prom(struct prom_args *args, unsigned long entry); extern void copy_and_flush(unsigned long dest, unsigned long src, unsigned long size, unsigned long offset); extern unsigned long klimit; /* prom structure */ static struct prom_t __initdata prom; #define PROM_SCRATCH_SIZE 256 static char __initdata of_stdout_device[256]; static char __initdata prom_scratch[PROM_SCRATCH_SIZE]; static unsigned long __initdata dt_header_start; static unsigned long __initdata dt_struct_start, dt_struct_end; static unsigned long __initdata dt_string_start, dt_string_end; static unsigned long __initdata prom_initrd_start, prom_initrd_end; static int __initdata iommu_force_on; static int __initdata ppc64_iommu_off; static int __initdata of_platform; static char __initdata prom_cmd_line[COMMAND_LINE_SIZE]; static unsigned long __initdata prom_memory_limit; static unsigned long __initdata prom_tce_alloc_start; static unsigned long __initdata prom_tce_alloc_end; static unsigned long __initdata alloc_top; static unsigned long __initdata alloc_top_high; static unsigned long __initdata alloc_bottom; static unsigned long __initdata rmo_top; static unsigned long __initdata ram_top; static struct mem_map_entry __initdata mem_reserve_map[MEM_RESERVE_MAP_SIZE]; static int __initdata mem_reserve_cnt; static cell_t __initdata regbuf[1024]; #define MAX_CPU_THREADS 2 /* TO GO */ #ifdef CONFIG_HMT struct { unsigned int pir; unsigned int threadid; } hmt_thread_data[NR_CPUS]; #endif /* CONFIG_HMT */ /* * This are used in calls to call_prom. The 4th and following * arguments to call_prom should be 32-bit values. 64 bit values * are truncated to 32 bits (and fortunately don't get interpreted * as two arguments). */ #define ADDR(x) (u32) ((unsigned long)(x) - offset) /* * Error results ... some OF calls will return "-1" on error, some * will return 0, some will return either. To simplify, here are * macros to use with any ihandle or phandle return value to check if * it is valid */ #define PROM_ERROR (-1u) #define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR) #define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR) /* This is the one and *ONLY* place where we actually call open * firmware from, since we need to make sure we're running in 32b * mode when we do. We switch back to 64b mode upon return. */ static int __init call_prom(const char *service, int nargs, int nret, ...) { int i; unsigned long offset = reloc_offset(); struct prom_t *_prom = PTRRELOC(&prom); va_list list; _prom->args.service = ADDR(service); _prom->args.nargs = nargs; _prom->args.nret = nret; _prom->args.rets = (prom_arg_t *)&(_prom->args.args[nargs]); va_start(list, nret); for (i=0; i < nargs; i++) _prom->args.args[i] = va_arg(list, prom_arg_t); va_end(list); for (i=0; i < nret ;i++) _prom->args.rets[i] = 0; enter_prom(&_prom->args, _prom->entry); return (nret > 0) ? _prom->args.rets[0] : 0; } static unsigned int __init prom_claim(unsigned long virt, unsigned long size, unsigned long align) { return (unsigned int)call_prom("claim", 3, 1, (prom_arg_t)virt, (prom_arg_t)size, (prom_arg_t)align); } static void __init prom_print(const char *msg) { const char *p, *q; unsigned long offset = reloc_offset(); struct prom_t *_prom = PTRRELOC(&prom); if (_prom->stdout == 0) return; for (p = msg; *p != 0; p = q) { for (q = p; *q != 0 && *q != '\n'; ++q) ; if (q > p) call_prom("write", 3, 1, _prom->stdout, p, q - p); if (*q == 0) break; ++q; call_prom("write", 3, 1, _prom->stdout, ADDR("\r\n"), 2); } } static void __init prom_print_hex(unsigned long val) { unsigned long offset = reloc_offset(); int i, nibbles = sizeof(val)*2; char buf[sizeof(val)*2+1]; struct prom_t *_prom = PTRRELOC(&prom); for (i = nibbles-1; i >= 0; i--) { buf[i] = (val & 0xf) + '0'; if (buf[i] > '9') buf[i] += ('a'-'0'-10); val >>= 4; } buf[nibbles] = '\0'; call_prom("write", 3, 1, _prom->stdout, buf, nibbles); } static void __init prom_printf(const char *format, ...) { unsigned long offset = reloc_offset(); const char *p, *q, *s; va_list args; unsigned long v; struct prom_t *_prom = PTRRELOC(&prom); va_start(args, format); for (p = PTRRELOC(format); *p != 0; p = q) { for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q) ; if (q > p) call_prom("write", 3, 1, _prom->stdout, p, q - p); if (*q == 0) break; if (*q == '\n') { ++q; call_prom("write", 3, 1, _prom->stdout, ADDR("\r\n"), 2); continue; } ++q; if (*q == 0) break; switch (*q) { case 's': ++q; s = va_arg(args, const char *); prom_print(s); break; case 'x': ++q; v = va_arg(args, unsigned long); prom_print_hex(v); break; } } } static void __init __attribute__((noreturn)) prom_panic(const char *reason) { unsigned long offset = reloc_offset(); prom_print(PTRRELOC(reason)); /* ToDo: should put up an SRC here */ call_prom("exit", 0, 0); for (;;) /* should never get here */ ; } static int __init prom_next_node(phandle *nodep) { phandle node; if ((node = *nodep) != 0 && (*nodep = call_prom("child", 1, 1, node)) != 0) return 1; if ((*nodep = call_prom("peer", 1, 1, node)) != 0) return 1; for (;;) { if ((node = call_prom("parent", 1, 1, node)) == 0) return 0; if ((*nodep = call_prom("peer", 1, 1, node)) != 0) return 1; } } static int __init prom_getprop(phandle node, const char *pname, void *value, size_t valuelen) { unsigned long offset = reloc_offset(); return call_prom("getprop", 4, 1, node, ADDR(pname), (u32)(unsigned long) value, (u32) valuelen); } static int __init prom_getproplen(phandle node, const char *pname) { unsigned long offset = reloc_offset(); return call_prom("getproplen", 2, 1, node, ADDR(pname)); } static int __init prom_setprop(phandle node, const char *pname, void *value, size_t valuelen) { unsigned long offset = reloc_offset(); return call_prom("setprop", 4, 1, node, ADDR(pname), (u32)(unsigned long) value, (u32) valuelen); } /* We can't use the standard versions because of RELOC headaches. */ #define isxdigit(c) (('0' <= (c) && (c) <= '9') \ || ('a' <= (c) && (c) <= 'f') \ || ('A' <= (c) && (c) <= 'F')) #define isdigit(c) ('0' <= (c) && (c) <= '9') #define islower(c) ('a' <= (c) && (c) <= 'z') #define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c)) unsigned long prom_strtoul(const char *cp, const char **endp) { unsigned long result = 0, base = 10, value; if (*cp == '0') { base = 8; cp++; if (toupper(*cp) == 'X') { cp++; base = 16; } } while (isxdigit(*cp) && (value = isdigit(*cp) ? *cp - '0' : toupper(*cp) - 'A' + 10) < base) { result = result * base + value; cp++; } if (endp) *endp = cp; return result; } unsigned long prom_memparse(const char *ptr, const char **retptr) { unsigned long ret = prom_strtoul(ptr, retptr); int shift = 0; /* * We can't use a switch here because GCC *may* generate a * jump table which won't work, because we're not running at * the address we're linked at. */ if ('G' == **retptr || 'g' == **retptr) shift = 30; if ('M' == **retptr || 'm' == **retptr) shift = 20; if ('K' == **retptr || 'k' == **retptr) shift = 10; if (shift) { ret <<= shift; (*retptr)++; } return ret; } /* * Early parsing of the command line passed to the kernel, used for * "mem=x" and the options that affect the iommu */ static void __init early_cmdline_parse(void) { unsigned long offset = reloc_offset(); struct prom_t *_prom = PTRRELOC(&prom); char *opt, *p; int l = 0; RELOC(prom_cmd_line[0]) = 0; p = RELOC(prom_cmd_line); if ((long)_prom->chosen > 0) l = prom_getprop(_prom->chosen, "bootargs", p, COMMAND_LINE_SIZE-1); #ifdef CONFIG_CMDLINE if (l == 0) /* dbl check */ strlcpy(RELOC(prom_cmd_line), RELOC(CONFIG_CMDLINE), sizeof(prom_cmd_line)); #endif /* CONFIG_CMDLINE */ prom_printf("command line: %s\n", RELOC(prom_cmd_line)); opt = strstr(RELOC(prom_cmd_line), RELOC("iommu=")); if (opt) { prom_printf("iommu opt is: %s\n", opt); opt += 6; while (*opt && *opt == ' ') opt++; if (!strncmp(opt, RELOC("off"), 3)) RELOC(ppc64_iommu_off) = 1; else if (!strncmp(opt, RELOC("force"), 5)) RELOC(iommu_force_on) = 1; } opt = strstr(RELOC(prom_cmd_line), RELOC("mem=")); if (opt) { opt += 4; RELOC(prom_memory_limit) = prom_memparse(opt, (const char **)&opt); /* Align to 16 MB == size of large page */ RELOC(prom_memory_limit) = ALIGN(RELOC(prom_memory_limit), 0x1000000); } } /* * To tell the firmware what our capabilities are, we have to pass * it a fake 32-bit ELF header containing a couple of PT_NOTE sections * that contain structures that contain the actual values. */ static struct fake_elf { Elf32_Ehdr elfhdr; Elf32_Phdr phdr[2]; struct chrpnote { u32 namesz; u32 descsz; u32 type; char name[8]; /* "PowerPC" */ struct chrpdesc { u32 real_mode; u32 real_base; u32 real_size; u32 virt_base; u32 virt_size; u32 load_base; } chrpdesc; } chrpnote; struct rpanote { u32 namesz; u32 descsz; u32 type; char name[24]; /* "IBM,RPA-Client-Config" */ struct rpadesc { u32 lpar_affinity; u32 min_rmo_size; u32 min_rmo_percent; u32 max_pft_size; u32 splpar; u32 min_load; u32 new_mem_def; u32 ignore_me; } rpadesc; } rpanote; } fake_elf = { .elfhdr = { .e_ident = { 0x7f, 'E', 'L', 'F', ELFCLASS32, ELFDATA2MSB, EV_CURRENT }, .e_type = ET_EXEC, /* yeah right */ .e_machine = EM_PPC, .e_version = EV_CURRENT, .e_phoff = offsetof(struct fake_elf, phdr), .e_phentsize = sizeof(Elf32_Phdr), .e_phnum = 2 }, .phdr = { [0] = { .p_type = PT_NOTE, .p_offset = offsetof(struct fake_elf, chrpnote), .p_filesz = sizeof(struct chrpnote) }, [1] = { .p_type = PT_NOTE, .p_offset = offsetof(struct fake_elf, rpanote), .p_filesz = sizeof(struct rpanote) } }, .chrpnote = { .namesz = sizeof("PowerPC"), .descsz = sizeof(struct chrpdesc), .type = 0x1275, .name = "PowerPC", .chrpdesc = { .real_mode = ~0U, /* ~0 means "don't care" */ .real_base = ~0U, .real_size = ~0U, .virt_base = ~0U, .virt_size = ~0U, .load_base = ~0U }, }, .rpanote = { .namesz = sizeof("IBM,RPA-Client-Config"), .descsz = sizeof(struct rpadesc), .type = 0x12759999, .name = "IBM,RPA-Client-Config", .rpadesc = { .lpar_affinity = 0, .min_rmo_size = 64, /* in megabytes */ .min_rmo_percent = 0, .max_pft_size = 48, /* 2^48 bytes max PFT size */ .splpar = 1, .min_load = ~0U, .new_mem_def = 0 } } }; static void __init prom_send_capabilities(void) { unsigned long offset = reloc_offset(); ihandle elfloader; elfloader = call_prom("open", 1, 1, ADDR("/packages/elf-loader")); if (elfloader == 0) { prom_printf("couldn't open /packages/elf-loader\n"); return; } call_prom("call-method", 3, 1, ADDR("process-elf-header"), elfloader, ADDR(&fake_elf)); call_prom("close", 1, 0, elfloader); } /* * Memory allocation strategy... our layout is normally: * * at 14Mb or more we vmlinux, then a gap and initrd. In some rare cases, initrd * might end up beeing before the kernel though. We assume this won't override * the final kernel at 0, we have no provision to handle that in this version, * but it should hopefully never happen. * * alloc_top is set to the top of RMO, eventually shrink down if the TCEs overlap * alloc_bottom is set to the top of kernel/initrd * * from there, allocations are done that way : rtas is allocated topmost, and * the device-tree is allocated from the bottom. We try to grow the device-tree * allocation as we progress. If we can't, then we fail, we don't currently have * a facility to restart elsewhere, but that shouldn't be necessary neither * * Note that calls to reserve_mem have to be done explicitely, memory allocated * with either alloc_up or alloc_down isn't automatically reserved. */ /* * Allocates memory in the RMO upward from the kernel/initrd * * When align is 0, this is a special case, it means to allocate in place * at the current location of alloc_bottom or fail (that is basically * extending the previous allocation). Used for the device-tree flattening */ static unsigned long __init alloc_up(unsigned long size, unsigned long align) { unsigned long offset = reloc_offset(); unsigned long base = _ALIGN_UP(RELOC(alloc_bottom), align); unsigned long addr = 0; prom_debug("alloc_up(%x, %x)\n", size, align); if (RELOC(ram_top) == 0) prom_panic("alloc_up() called with mem not initialized\n"); if (align) base = _ALIGN_UP(RELOC(alloc_bottom), align); else base = RELOC(alloc_bottom); for(; (base + size) <= RELOC(alloc_top); base = _ALIGN_UP(base + 0x100000, align)) { prom_debug(" trying: 0x%x\n\r", base); addr = (unsigned long)prom_claim(base, size, 0); if (addr != PROM_ERROR) break; addr = 0; if (align == 0) break; } if (addr == 0) return 0; RELOC(alloc_bottom) = addr; prom_debug(" -> %x\n", addr); prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom)); prom_debug(" alloc_top : %x\n", RELOC(alloc_top)); prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high)); prom_debug(" rmo_top : %x\n", RELOC(rmo_top)); prom_debug(" ram_top : %x\n", RELOC(ram_top)); return addr; } /* * Allocates memory downard, either from top of RMO, or if highmem * is set, from the top of RAM. Note that this one doesn't handle * failures. In does claim memory if highmem is not set. */ static unsigned long __init alloc_down(unsigned long size, unsigned long align, int highmem) { unsigned long offset = reloc_offset(); unsigned long base, addr = 0; prom_debug("alloc_down(%x, %x, %s)\n", size, align, highmem ? RELOC("(high)") : RELOC("(low)")); if (RELOC(ram_top) == 0) prom_panic("alloc_down() called with mem not initialized\n"); if (highmem) { /* Carve out storage for the TCE table. */ addr = _ALIGN_DOWN(RELOC(alloc_top_high) - size, align); if (addr <= RELOC(alloc_bottom)) return 0; else { /* Will we bump into the RMO ? If yes, check out that we * didn't overlap existing allocations there, if we did, * we are dead, we must be the first in town ! */ if (addr < RELOC(rmo_top)) { /* Good, we are first */ if (RELOC(alloc_top) == RELOC(rmo_top)) RELOC(alloc_top) = RELOC(rmo_top) = addr; else return 0; } RELOC(alloc_top_high) = addr; } goto bail; } base = _ALIGN_DOWN(RELOC(alloc_top) - size, align); for(; base > RELOC(alloc_bottom); base = _ALIGN_DOWN(base - 0x100000, align)) { prom_debug(" trying: 0x%x\n\r", base); addr = (unsigned long)prom_claim(base, size, 0); if (addr != PROM_ERROR) break; addr = 0; } if (addr == 0) return 0; RELOC(alloc_top) = addr; bail: prom_debug(" -> %x\n", addr); prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom)); prom_debug(" alloc_top : %x\n", RELOC(alloc_top)); prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high)); prom_debug(" rmo_top : %x\n", RELOC(rmo_top)); prom_debug(" ram_top : %x\n", RELOC(ram_top)); return addr; } /* * Parse a "reg" cell */ static unsigned long __init prom_next_cell(int s, cell_t **cellp) { cell_t *p = *cellp; unsigned long r = 0; /* Ignore more than 2 cells */ while (s > 2) { p++; s--; } while (s) { r <<= 32; r |= *(p++); s--; } *cellp = p; return r; } /* * Very dumb function for adding to the memory reserve list, but * we don't need anything smarter at this point * * XXX Eventually check for collisions. They should NEVER happen * if problems seem to show up, it would be a good start to track * them down. */ static void reserve_mem(unsigned long base, unsigned long size) { unsigned long offset = reloc_offset(); unsigned long top = base + size; unsigned long cnt = RELOC(mem_reserve_cnt); if (size == 0) return; /* We need to always keep one empty entry so that we * have our terminator with "size" set to 0 since we are * dumb and just copy this entire array to the boot params */ base = _ALIGN_DOWN(base, PAGE_SIZE); top = _ALIGN_UP(top, PAGE_SIZE); size = top - base; if (cnt >= (MEM_RESERVE_MAP_SIZE - 1)) prom_panic("Memory reserve map exhausted !\n"); RELOC(mem_reserve_map)[cnt].base = base; RELOC(mem_reserve_map)[cnt].size = size; RELOC(mem_reserve_cnt) = cnt + 1; } /* * Initialize memory allocation mecanism, parse "memory" nodes and * obtain that way the top of memory and RMO to setup out local allocator */ static void __init prom_init_mem(void) { phandle node; char *path, type[64]; unsigned int plen; cell_t *p, *endp; unsigned long offset = reloc_offset(); struct prom_t *_prom = PTRRELOC(&prom); /* * We iterate the memory nodes to find * 1) top of RMO (first node) * 2) top of memory */ prom_debug("root_addr_cells: %x\n", (long)_prom->root_addr_cells); prom_debug("root_size_cells: %x\n", (long)_prom->root_size_cells); prom_debug("scanning memory:\n"); path = RELOC(prom_scratch); for (node = 0; prom_next_node(&node); ) { type[0] = 0; prom_getprop(node, "device_type", type, sizeof(type)); if (strcmp(type, RELOC("memory"))) continue; plen = prom_getprop(node, "reg", RELOC(regbuf), sizeof(regbuf)); if (plen > sizeof(regbuf)) { prom_printf("memory node too large for buffer !\n"); plen = sizeof(regbuf); } p = RELOC(regbuf); endp = p + (plen / sizeof(cell_t)); #ifdef DEBUG_PROM memset(path, 0, PROM_SCRATCH_SIZE); call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1); prom_debug(" node %s :\n", path); #endif /* DEBUG_PROM */ while ((endp - p) >= (_prom->root_addr_cells + _prom->root_size_cells)) { unsigned long base, size; base = prom_next_cell(_prom->root_addr_cells, &p); size = prom_next_cell(_prom->root_size_cells, &p); if (size == 0) continue; prom_debug(" %x %x\n", base, size); if (base == 0) RELOC(rmo_top) = size; if ((base + size) > RELOC(ram_top)) RELOC(ram_top) = base + size; } } RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(klimit) - offset + 0x4000); /* Check if we have an initrd after the kernel, if we do move our bottom * point to after it */ if (RELOC(prom_initrd_start)) { if (RELOC(prom_initrd_end) > RELOC(alloc_bottom)) RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(prom_initrd_end)); } /* * If prom_memory_limit is set we reduce the upper limits *except* for * alloc_top_high. This must be the real top of RAM so we can put * TCE's up there. */ RELOC(alloc_top_high) = RELOC(ram_top); if (RELOC(prom_memory_limit)) { if (RELOC(prom_memory_limit) <= RELOC(alloc_bottom)) { prom_printf("Ignoring mem=%x <= alloc_bottom.\n", RELOC(prom_memory_limit)); RELOC(prom_memory_limit) = 0; } else if (RELOC(prom_memory_limit) >= RELOC(ram_top)) { prom_printf("Ignoring mem=%x >= ram_top.\n", RELOC(prom_memory_limit)); RELOC(prom_memory_limit) = 0; } else { RELOC(ram_top) = RELOC(prom_memory_limit); RELOC(rmo_top) = min(RELOC(rmo_top), RELOC(prom_memory_limit)); } } /* * Setup our top alloc point, that is top of RMO or top of * segment 0 when running non-LPAR. */ if ( RELOC(of_platform) == PLATFORM_PSERIES_LPAR ) RELOC(alloc_top) = RELOC(rmo_top); else /* Some RS64 machines have buggy firmware where claims up at 1GB * fails. Cap at 768MB as a workaround. Still plenty of room. */ RELOC(alloc_top) = RELOC(rmo_top) = min(0x30000000ul, RELOC(ram_top)); prom_printf("memory layout at init:\n"); prom_printf(" memory_limit : %x (16 MB aligned)\n", RELOC(prom_memory_limit)); prom_printf(" alloc_bottom : %x\n", RELOC(alloc_bottom)); prom_printf(" alloc_top : %x\n", RELOC(alloc_top)); prom_printf(" alloc_top_hi : %x\n", RELOC(alloc_top_high)); prom_printf(" rmo_top : %x\n", RELOC(rmo_top)); prom_printf(" ram_top : %x\n", RELOC(ram_top)); } /* * Allocate room for and instanciate RTAS */ static void __init prom_instantiate_rtas(void) { unsigned long offset = reloc_offset(); struct prom_t *_prom = PTRRELOC(&prom); phandle rtas_node; ihandle rtas_inst; u32 base, entry = 0; u32 size = 0; prom_debug("prom_instantiate_rtas: start...\n"); rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas")); prom_debug("rtas_node: %x\n", rtas_node); if (!PHANDLE_VALID(rtas_node)) return; prom_getprop(rtas_node, "rtas-size", &size, sizeof(size)); if (size == 0) return; base = alloc_down(size, PAGE_SIZE, 0); if (base == 0) { prom_printf("RTAS allocation failed !\n"); return; } rtas_inst = call_prom("open", 1, 1, ADDR("/rtas")); if (!IHANDLE_VALID(rtas_inst)) { prom_printf("opening rtas package failed"); return; } prom_printf("instantiating rtas at 0x%x ...", base); if (call_prom("call-method", 3, 2, ADDR("instantiate-rtas"), rtas_inst, base) != PROM_ERROR) { entry = (long)_prom->args.rets[1]; } if (entry == 0) { prom_printf(" failed\n"); return; } prom_printf(" done\n"); reserve_mem(base, size); prom_setprop(rtas_node, "linux,rtas-base", &base, sizeof(base)); prom_setprop(rtas_node, "linux,rtas-entry", &entry, sizeof(entry)); prom_debug("rtas base = 0x%x\n", base); prom_debug("rtas entry = 0x%x\n", entry); prom_debug("rtas size = 0x%x\n", (long)size); prom_debug("prom_instantiate_rtas: end...\n"); } /* * Allocate room for and initialize TCE tables */ static void __init prom_initialize_tce_table(void) { phandle node; ihandle phb_node; unsigned long offset = reloc_offset(); char compatible[64], type[64], model[64]; char *path = RELOC(prom_scratch); u64 base, align; u32 minalign, minsize; u64 tce_entry, *tce_entryp; u64 local_alloc_top, local_alloc_bottom; u64 i; if (RELOC(ppc64_iommu_off)) return; prom_debug("starting prom_initialize_tce_table\n"); /* Cache current top of allocs so we reserve a single block */ local_alloc_top = RELOC(alloc_top_high); local_alloc_bottom = local_alloc_top; /* Search all nodes looking for PHBs. */ for (node = 0; prom_next_node(&node); ) { compatible[0] = 0; type[0] = 0; model[0] = 0; prom_getprop(node, "compatible", compatible, sizeof(compatible)); prom_getprop(node, "device_type", type, sizeof(type)); prom_getprop(node, "model", model, sizeof(model)); if ((type[0] == 0) || (strstr(type, RELOC("pci")) == NULL)) continue; /* Keep the old logic in tack to avoid regression. */ if (compatible[0] != 0) { if ((strstr(compatible, RELOC("python")) == NULL) && (strstr(compatible, RELOC("Speedwagon")) == NULL) && (strstr(compatible, RELOC("Winnipeg")) == NULL)) continue; } else if (model[0] != 0) { if ((strstr(model, RELOC("ython")) == NULL) && (strstr(model, RELOC("peedwagon")) == NULL) && (strstr(model, RELOC("innipeg")) == NULL)) continue; } if (prom_getprop(node, "tce-table-minalign", &minalign, sizeof(minalign)) == PROM_ERROR) minalign = 0; if (prom_getprop(node, "tce-table-minsize", &minsize, sizeof(minsize)) == PROM_ERROR) minsize = 4UL << 20; /* * Even though we read what OF wants, we just set the table * size to 4 MB. This is enough to map 2GB of PCI DMA space. * By doing this, we avoid the pitfalls of trying to DMA to * MMIO space and the DMA alias hole. * * On POWER4, firmware sets the TCE region by assuming * each TCE table is 8MB. Using this memory for anything * else will impact performance, so we always allocate 8MB. * Anton */ if (__is_processor(PV_POWER4) || __is_processor(PV_POWER4p)) minsize = 8UL << 20; else minsize = 4UL << 20; /* Align to the greater of the align or size */ align = max(minalign, minsize); base = alloc_down(minsize, align, 1); if (base == 0) prom_panic("ERROR, cannot find space for TCE table.\n"); if (base < local_alloc_bottom) local_alloc_bottom = base; /* Save away the TCE table attributes for later use. */ prom_setprop(node, "linux,tce-base", &base, sizeof(base)); prom_setprop(node, "linux,tce-size", &minsize, sizeof(minsize)); /* It seems OF doesn't null-terminate the path :-( */ memset(path, 0, sizeof(path)); /* Call OF to setup the TCE hardware */ if (call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1) == PROM_ERROR) { prom_printf("package-to-path failed\n"); } prom_debug("TCE table: %s\n", path); prom_debug("\tnode = 0x%x\n", node); prom_debug("\tbase = 0x%x\n", base); prom_debug("\tsize = 0x%x\n", minsize); /* Initialize the table to have a one-to-one mapping * over the allocated size. */ tce_entryp = (unsigned long *)base; for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) { tce_entry = (i << PAGE_SHIFT); tce_entry |= 0x3; *tce_entryp = tce_entry; } prom_printf("opening PHB %s", path); phb_node = call_prom("open", 1, 1, path); if (phb_node == 0) prom_printf("... failed\n"); else prom_printf("... done\n"); call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"), phb_node, -1, minsize, (u32) base, (u32) (base >> 32)); call_prom("close", 1, 0, phb_node); } reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom); if (RELOC(prom_memory_limit)) { /* * We align the start to a 16MB boundary so we can map the TCE area * using large pages if possible. The end should be the top of RAM * so no need to align it. */ RELOC(prom_tce_alloc_start) = _ALIGN_DOWN(local_alloc_bottom, 0x1000000); RELOC(prom_tce_alloc_end) = local_alloc_top; } /* Flag the first invalid entry */ prom_debug("ending prom_initialize_tce_table\n"); } /* * With CHRP SMP we need to use the OF to start the other * processors so we can't wait until smp_boot_cpus (the OF is * trashed by then) so we have to put the processors into * a holding pattern controlled by the kernel (not OF) before * we destroy the OF. * * This uses a chunk of low memory, puts some holding pattern * code there and sends the other processors off to there until * smp_boot_cpus tells them to do something. The holding pattern * checks that address until its cpu # is there, when it is that * cpu jumps to __secondary_start(). smp_boot_cpus() takes care * of setting those values. * * We also use physical address 0x4 here to tell when a cpu * is in its holding pattern code. * * Fixup comment... DRENG / PPPBBB - Peter * * -- Cort */ static void __init prom_hold_cpus(void) { unsigned long i; unsigned int reg; phandle node; unsigned long offset = reloc_offset(); char type[64]; int cpuid = 0; unsigned int interrupt_server[MAX_CPU_THREADS]; unsigned int cpu_threads, hw_cpu_num; int propsize; extern void __secondary_hold(void); extern unsigned long __secondary_hold_spinloop; extern unsigned long __secondary_hold_acknowledge; unsigned long *spinloop = (void *)virt_to_abs(&__secondary_hold_spinloop); unsigned long *acknowledge = (void *)virt_to_abs(&__secondary_hold_acknowledge); unsigned long secondary_hold = virt_to_abs(*PTRRELOC((unsigned long *)__secondary_hold)); struct prom_t *_prom = PTRRELOC(&prom); prom_debug("prom_hold_cpus: start...\n"); prom_debug(" 1) spinloop = 0x%x\n", (unsigned long)spinloop); prom_debug(" 1) *spinloop = 0x%x\n", *spinloop); prom_debug(" 1) acknowledge = 0x%x\n", (unsigned long)acknowledge); prom_debug(" 1) *acknowledge = 0x%x\n", *acknowledge); prom_debug(" 1) secondary_hold = 0x%x\n", secondary_hold); /* Set the common spinloop variable, so all of the secondary cpus * will block when they are awakened from their OF spinloop. * This must occur for both SMP and non SMP kernels, since OF will * be trashed when we move the kernel. */ *spinloop = 0; #ifdef CONFIG_HMT for (i=0; i < NR_CPUS; i++) { RELOC(hmt_thread_data)[i].pir = 0xdeadbeef; } #endif /* look for cpus */ for (node = 0; prom_next_node(&node); ) { type[0] = 0; prom_getprop(node, "device_type", type, sizeof(type)); if (strcmp(type, RELOC("cpu")) != 0) continue; /* Skip non-configured cpus. */ if (prom_getprop(node, "status", type, sizeof(type)) > 0) if (strcmp(type, RELOC("okay")) != 0) continue; reg = -1; prom_getprop(node, "reg", ®, sizeof(reg)); prom_debug("\ncpuid = 0x%x\n", cpuid); prom_debug("cpu hw idx = 0x%x\n", reg); /* Init the acknowledge var which will be reset by * the secondary cpu when it awakens from its OF * spinloop. */ *acknowledge = (unsigned long)-1; propsize = prom_getprop(node, "ibm,ppc-interrupt-server#s", &interrupt_server, sizeof(interrupt_server)); if (propsize < 0) { /* no property. old hardware has no SMT */ cpu_threads = 1; interrupt_server[0] = reg; /* fake it with phys id */ } else { /* We have a threaded processor */ cpu_threads = propsize / sizeof(u32); if (cpu_threads > MAX_CPU_THREADS) { prom_printf("SMT: too many threads!\n" "SMT: found %x, max is %x\n", cpu_threads, MAX_CPU_THREADS); cpu_threads = 1; /* ToDo: panic? */ } } hw_cpu_num = interrupt_server[0]; if (hw_cpu_num != _prom->cpu) { /* Primary Thread of non-boot cpu */ prom_printf("%x : starting cpu hw idx %x... ", cpuid, reg); call_prom("start-cpu", 3, 0, node, secondary_hold, reg); for ( i = 0 ; (i < 100000000) && (*acknowledge == ((unsigned long)-1)); i++ ) mb(); if (*acknowledge == reg) { prom_printf("done\n"); /* We have to get every CPU out of OF, * even if we never start it. */ if (cpuid >= NR_CPUS) goto next; } else { prom_printf("failed: %x\n", *acknowledge); } } #ifdef CONFIG_SMP else prom_printf("%x : boot cpu %x\n", cpuid, reg); #endif next: #ifdef CONFIG_SMP /* Init paca for secondary threads. They start later. */ for (i=1; i < cpu_threads; i++) { cpuid++; if (cpuid >= NR_CPUS) continue; } #endif /* CONFIG_SMP */ cpuid++; } #ifdef CONFIG_HMT /* Only enable HMT on processors that provide support. */ if (__is_processor(PV_PULSAR) || __is_processor(PV_ICESTAR) || __is_processor(PV_SSTAR)) { prom_printf(" starting secondary threads\n"); for (i = 0; i < NR_CPUS; i += 2) { if (!cpu_online(i)) continue; if (i == 0) { unsigned long pir = mfspr(SPRN_PIR); if (__is_processor(PV_PULSAR)) { RELOC(hmt_thread_data)[i].pir = pir & 0x1f; } else { RELOC(hmt_thread_data)[i].pir = pir & 0x3ff; } } } } else { prom_printf("Processor is not HMT capable\n"); } #endif if (cpuid > NR_CPUS) prom_printf("WARNING: maximum CPUs (" __stringify(NR_CPUS) ") exceeded: ignoring extras\n"); prom_debug("prom_hold_cpus: end...\n"); } static void __init prom_init_client_services(unsigned long pp) { unsigned long offset = reloc_offset(); struct prom_t *_prom = PTRRELOC(&prom); /* Get a handle to the prom entry point before anything else */ _prom->entry = pp; /* Init default value for phys size */ _prom->root_size_cells = 1; _prom->root_addr_cells = 2; /* get a handle for the stdout device */ _prom->chosen = call_prom("finddevice", 1, 1, ADDR("/chosen")); if (!PHANDLE_VALID(_prom->chosen)) prom_panic("cannot find chosen"); /* msg won't be printed :( */ /* get device tree root */ _prom->root = call_prom("finddevice", 1, 1, ADDR("/")); if (!PHANDLE_VALID(_prom->root)) prom_panic("cannot find device tree root"); /* msg won't be printed :( */ } static void __init prom_init_stdout(void) { unsigned long offset = reloc_offset(); struct prom_t *_prom = PTRRELOC(&prom); char *path = RELOC(of_stdout_device); char type[16]; u32 val; if (prom_getprop(_prom->chosen, "stdout", &val, sizeof(val)) <= 0) prom_panic("cannot find stdout"); _prom->stdout = val; /* Get the full OF pathname of the stdout device */ memset(path, 0, 256); call_prom("instance-to-path", 3, 1, _prom->stdout, path, 255); val = call_prom("instance-to-package", 1, 1, _prom->stdout); prom_setprop(_prom->chosen, "linux,stdout-package", &val, sizeof(val)); prom_printf("OF stdout device is: %s\n", RELOC(of_stdout_device)); prom_setprop(_prom->chosen, "linux,stdout-path", RELOC(of_stdout_device), strlen(RELOC(of_stdout_device))+1); /* If it's a display, note it */ memset(type, 0, sizeof(type)); prom_getprop(val, "device_type", type, sizeof(type)); if (strcmp(type, RELOC("display")) == 0) { _prom->disp_node = val; prom_setprop(val, "linux,boot-display", NULL, 0); } } static void __init prom_close_stdin(void) { unsigned long offset = reloc_offset(); struct prom_t *_prom = PTRRELOC(&prom); ihandle val; if (prom_getprop(_prom->chosen, "stdin", &val, sizeof(val)) > 0) call_prom("close", 1, 0, val); } static int __init prom_find_machine_type(void) { unsigned long offset = reloc_offset(); struct prom_t *_prom = PTRRELOC(&prom); char compat[256]; int len, i = 0; phandle rtas; len = prom_getprop(_prom->root, "compatible", compat, sizeof(compat)-1); if (len > 0) { compat[len] = 0; while (i < len) { char *p = &compat[i]; int sl = strlen(p); if (sl == 0) break; if (strstr(p, RELOC("Power Macintosh")) || strstr(p, RELOC("MacRISC4"))) return PLATFORM_POWERMAC; if (strstr(p, RELOC("Momentum,Maple"))) return PLATFORM_MAPLE; i += sl + 1; } } /* Default to pSeries. We need to know if we are running LPAR */ rtas = call_prom("finddevice", 1, 1, ADDR("/rtas")); if (PHANDLE_VALID(rtas)) { int x = prom_getproplen(rtas, "ibm,hypertas-functions"); if (x != PROM_ERROR) { prom_printf("Hypertas detected, assuming LPAR !\n"); return PLATFORM_PSERIES_LPAR; } } return PLATFORM_PSERIES; } static int __init prom_set_color(ihandle ih, int i, int r, int g, int b) { unsigned long offset = reloc_offset(); return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r); } /* * If we have a display that we don't know how to drive, * we will want to try to execute OF's open method for it * later. However, OF will probably fall over if we do that * we've taken over the MMU. * So we check whether we will need to open the display, * and if so, open it now. */ static void __init prom_check_displays(void) { unsigned long offset = reloc_offset(); struct prom_t *_prom = PTRRELOC(&prom); char type[16], *path; phandle node; ihandle ih; int i; static unsigned char default_colors[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0xaa, 0x00, 0xaa, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0xaa, 0x00, 0xaa, 0xaa, 0xaa, 0x00, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0x55, 0xff, 0x55, 0xff, 0x55, 0x55, 0xff, 0xff, 0xff, 0x55, 0x55, 0xff, 0x55, 0xff, 0xff, 0xff, 0x55, 0xff, 0xff, 0xff }; const unsigned char *clut; prom_printf("Looking for displays\n"); for (node = 0; prom_next_node(&node); ) { memset(type, 0, sizeof(type)); prom_getprop(node, "device_type", type, sizeof(type)); if (strcmp(type, RELOC("display")) != 0) continue; /* It seems OF doesn't null-terminate the path :-( */ path = RELOC(prom_scratch); memset(path, 0, PROM_SCRATCH_SIZE); /* * leave some room at the end of the path for appending extra * arguments */ if (call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-10) == PROM_ERROR) continue; prom_printf("found display : %s, opening ... ", path); ih = call_prom("open", 1, 1, path); if (ih == 0) { prom_printf("failed\n"); continue; } /* Success */ prom_printf("done\n"); prom_setprop(node, "linux,opened", NULL, 0); /* * stdout wasn't a display node, pick the first we can find * for btext */ if (_prom->disp_node == 0) _prom->disp_node = node; /* Setup a useable color table when the appropriate * method is available. Should update this to set-colors */ clut = RELOC(default_colors); for (i = 0; i < 32; i++, clut += 3) if (prom_set_color(ih, i, clut[0], clut[1], clut[2]) != 0) break; #ifdef CONFIG_LOGO_LINUX_CLUT224 clut = PTRRELOC(RELOC(logo_linux_clut224.clut)); for (i = 0; i < RELOC(logo_linux_clut224.clutsize); i++, clut += 3) if (prom_set_color(ih, i + 32, clut[0], clut[1], clut[2]) != 0) break; #endif /* CONFIG_LOGO_LINUX_CLUT224 */ } } /* Return (relocated) pointer to this much memory: moves initrd if reqd. */ static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end, unsigned long needed, unsigned long align) { unsigned long offset = reloc_offset(); void *ret; *mem_start = _ALIGN(*mem_start, align); while ((*mem_start + needed) > *mem_end) { unsigned long room, chunk; prom_debug("Chunk exhausted, claiming more at %x...\n", RELOC(alloc_bottom)); room = RELOC(alloc_top) - RELOC(alloc_bottom); if (room > DEVTREE_CHUNK_SIZE) room = DEVTREE_CHUNK_SIZE; if (room < PAGE_SIZE) prom_panic("No memory for flatten_device_tree (no room)"); chunk = alloc_up(room, 0); if (chunk == 0) prom_panic("No memory for flatten_device_tree (claim failed)"); *mem_end = RELOC(alloc_top); } ret = (void *)*mem_start; *mem_start += needed; return ret; } #define dt_push_token(token, mem_start, mem_end) \ do { *((u32 *)make_room(mem_start, mem_end, 4, 4)) = token; } while(0) static unsigned long __init dt_find_string(char *str) { unsigned long offset = reloc_offset(); char *s, *os; s = os = (char *)RELOC(dt_string_start); s += 4; while (s < (char *)RELOC(dt_string_end)) { if (strcmp(s, str) == 0) return s - os; s += strlen(s) + 1; } return 0; } /* * The Open Firmware 1275 specification states properties must be 31 bytes or * less, however not all firmwares obey this. Make it 64 bytes to be safe. */ #define MAX_PROPERTY_NAME 64 static void __init scan_dt_build_strings(phandle node, unsigned long *mem_start, unsigned long *mem_end) { unsigned long offset = reloc_offset(); char *prev_name, *namep, *sstart; unsigned long soff; phandle child; sstart = (char *)RELOC(dt_string_start); /* get and store all property names */ prev_name = RELOC(""); for (;;) { /* 64 is max len of name including nul. */ namep = make_room(mem_start, mem_end, MAX_PROPERTY_NAME, 1); if (call_prom("nextprop", 3, 1, node, prev_name, namep) != 1) { /* No more nodes: unwind alloc */ *mem_start = (unsigned long)namep; break; } /* skip "name" */ if (strcmp(namep, RELOC("name")) == 0) { *mem_start = (unsigned long)namep; prev_name = RELOC("name"); continue; } /* get/create string entry */ soff = dt_find_string(namep); if (soff != 0) { *mem_start = (unsigned long)namep; namep = sstart + soff; } else { /* Trim off some if we can */ *mem_start = (unsigned long)namep + strlen(namep) + 1; RELOC(dt_string_end) = *mem_start; } prev_name = namep; } /* do all our children */ child = call_prom("child", 1, 1, node); while (child != 0) { scan_dt_build_strings(child, mem_start, mem_end); child = call_prom("peer", 1, 1, child); } } static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start, unsigned long *mem_end) { phandle child; char *namep, *prev_name, *sstart, *p, *ep, *lp, *path; unsigned long soff; unsigned char *valp; unsigned long offset = reloc_offset(); static char pname[MAX_PROPERTY_NAME]; int l; dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end); /* get the node's full name */ namep = (char *)*mem_start; l = call_prom("package-to-path", 3, 1, node, namep, *mem_end - *mem_start); if (l >= 0) { /* Didn't fit? Get more room. */ if ((l+1) > (*mem_end - *mem_start)) { namep = make_room(mem_start, mem_end, l+1, 1); call_prom("package-to-path", 3, 1, node, namep, l); } namep[l] = '\0'; /* Fixup an Apple bug where they have bogus \0 chars in the * middle of the path in some properties */ for (p = namep, ep = namep + l; p < ep; p++) if (*p == '\0') { memmove(p, p+1, ep - p); ep--; l--; p--; } /* now try to extract the unit name in that mess */ for (p = namep, lp = NULL; *p; p++) if (*p == '/') lp = p + 1; if (lp != NULL) memmove(namep, lp, strlen(lp) + 1); *mem_start = _ALIGN(((unsigned long) namep) + strlen(namep) + 1, 4); } /* get it again for debugging */ path = RELOC(prom_scratch); memset(path, 0, PROM_SCRATCH_SIZE); call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1); /* get and store all properties */ prev_name = RELOC(""); sstart = (char *)RELOC(dt_string_start); for (;;) { if (call_prom("nextprop", 3, 1, node, prev_name, RELOC(pname)) != 1) break; /* skip "name" */ if (strcmp(RELOC(pname), RELOC("name")) == 0) { prev_name = RELOC("name"); continue; } /* find string offset */ soff = dt_find_string(RELOC(pname)); if (soff == 0) { prom_printf("WARNING: Can't find string index for" " <%s>, node %s\n", RELOC(pname), path); break; } prev_name = sstart + soff; /* get length */ l = call_prom("getproplen", 2, 1, node, RELOC(pname)); /* sanity checks */ if (l == PROM_ERROR) continue; if (l > MAX_PROPERTY_LENGTH) { prom_printf("WARNING: ignoring large property "); /* It seems OF doesn't null-terminate the path :-( */ prom_printf("[%s] ", path); prom_printf("%s length 0x%x\n", RELOC(pname), l); continue; } /* push property head */ dt_push_token(OF_DT_PROP, mem_start, mem_end); dt_push_token(l, mem_start, mem_end); dt_push_token(soff, mem_start, mem_end); /* push property content */ valp = make_room(mem_start, mem_end, l, 4); call_prom("getprop", 4, 1, node, RELOC(pname), valp, l); *mem_start = _ALIGN(*mem_start, 4); } /* Add a "linux,phandle" property. */ soff = dt_find_string(RELOC("linux,phandle")); if (soff == 0) prom_printf("WARNING: Can't find string index for" " node %s\n", path); else { dt_push_token(OF_DT_PROP, mem_start, mem_end); dt_push_token(4, mem_start, mem_end); dt_push_token(soff, mem_start, mem_end); valp = make_room(mem_start, mem_end, 4, 4); *(u32 *)valp = node; } /* do all our children */ child = call_prom("child", 1, 1, node); while (child != 0) { scan_dt_build_struct(child, mem_start, mem_end); child = call_prom("peer", 1, 1, child); } dt_push_token(OF_DT_END_NODE, mem_start, mem_end); } static void __init flatten_device_tree(void) { phandle root; unsigned long offset = reloc_offset(); unsigned long mem_start, mem_end, room; struct boot_param_header *hdr; char *namep; u64 *rsvmap; /* * Check how much room we have between alloc top & bottom (+/- a * few pages), crop to 4Mb, as this is our "chuck" size */ room = RELOC(alloc_top) - RELOC(alloc_bottom) - 0x4000; if (room > DEVTREE_CHUNK_SIZE) room = DEVTREE_CHUNK_SIZE; prom_debug("starting device tree allocs at %x\n", RELOC(alloc_bottom)); /* Now try to claim that */ mem_start = (unsigned long)alloc_up(room, PAGE_SIZE); if (mem_start == 0) prom_panic("Can't allocate initial device-tree chunk\n"); mem_end = RELOC(alloc_top); /* Get root of tree */ root = call_prom("peer", 1, 1, (phandle)0); if (root == (phandle)0) prom_panic ("couldn't get device tree root\n"); /* Build header and make room for mem rsv map */ mem_start = _ALIGN(mem_start, 4); hdr = make_room(&mem_start, &mem_end, sizeof(struct boot_param_header), 4); RELOC(dt_header_start) = (unsigned long)hdr; rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8); /* Start of strings */ mem_start = PAGE_ALIGN(mem_start); RELOC(dt_string_start) = mem_start; mem_start += 4; /* hole */ /* Add "linux,phandle" in there, we'll need it */ namep = make_room(&mem_start, &mem_end, 16, 1); strcpy(namep, RELOC("linux,phandle")); mem_start = (unsigned long)namep + strlen(namep) + 1; /* Build string array */ prom_printf("Building dt strings...\n"); scan_dt_build_strings(root, &mem_start, &mem_end); RELOC(dt_string_end) = mem_start; /* Build structure */ mem_start = PAGE_ALIGN(mem_start); RELOC(dt_struct_start) = mem_start; prom_printf("Building dt structure...\n"); scan_dt_build_struct(root, &mem_start, &mem_end); dt_push_token(OF_DT_END, &mem_start, &mem_end); RELOC(dt_struct_end) = PAGE_ALIGN(mem_start); /* Finish header */ hdr->magic = OF_DT_HEADER; hdr->totalsize = RELOC(dt_struct_end) - RELOC(dt_header_start); hdr->off_dt_struct = RELOC(dt_struct_start) - RELOC(dt_header_start); hdr->off_dt_strings = RELOC(dt_string_start) - RELOC(dt_header_start); hdr->dt_strings_size = RELOC(dt_string_end) - RELOC(dt_string_start); hdr->off_mem_rsvmap = ((unsigned long)rsvmap) - RELOC(dt_header_start); hdr->version = OF_DT_VERSION; /* Version 16 is not backward compatible */ hdr->last_comp_version = 0x10; /* Reserve the whole thing and copy the reserve map in, we * also bump mem_reserve_cnt to cause further reservations to * fail since it's too late. */ reserve_mem(RELOC(dt_header_start), hdr->totalsize); memcpy(rsvmap, RELOC(mem_reserve_map), sizeof(mem_reserve_map)); #ifdef DEBUG_PROM { int i; prom_printf("reserved memory map:\n"); for (i = 0; i < RELOC(mem_reserve_cnt); i++) prom_printf(" %x - %x\n", RELOC(mem_reserve_map)[i].base, RELOC(mem_reserve_map)[i].size); } #endif RELOC(mem_reserve_cnt) = MEM_RESERVE_MAP_SIZE; prom_printf("Device tree strings 0x%x -> 0x%x\n", RELOC(dt_string_start), RELOC(dt_string_end)); prom_printf("Device tree struct 0x%x -> 0x%x\n", RELOC(dt_struct_start), RELOC(dt_struct_end)); } static void __init fixup_device_tree(void) { unsigned long offset = reloc_offset(); phandle u3, i2c, mpic; u32 u3_rev; u32 interrupts[2]; u32 parent; /* Some G5s have a missing interrupt definition, fix it up here */ u3 = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000")); if (!PHANDLE_VALID(u3)) return; i2c = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000")); if (!PHANDLE_VALID(i2c)) return; mpic = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000")); if (!PHANDLE_VALID(mpic)) return; /* check if proper rev of u3 */ if (prom_getprop(u3, "device-rev", &u3_rev, sizeof(u3_rev)) == PROM_ERROR) return; if (u3_rev != 0x35 && u3_rev != 0x37) return; /* does it need fixup ? */ if (prom_getproplen(i2c, "interrupts") > 0) return; prom_printf("fixing up bogus interrupts for u3 i2c...\n"); /* interrupt on this revision of u3 is number 0 and level */ interrupts[0] = 0; interrupts[1] = 1; prom_setprop(i2c, "interrupts", &interrupts, sizeof(interrupts)); parent = (u32)mpic; prom_setprop(i2c, "interrupt-parent", &parent, sizeof(parent)); } static void __init prom_find_boot_cpu(void) { unsigned long offset = reloc_offset(); struct prom_t *_prom = PTRRELOC(&prom); u32 getprop_rval; ihandle prom_cpu; phandle cpu_pkg; if (prom_getprop(_prom->chosen, "cpu", &prom_cpu, sizeof(prom_cpu)) <= 0) prom_panic("cannot find boot cpu"); cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu); prom_setprop(cpu_pkg, "linux,boot-cpu", NULL, 0); prom_getprop(cpu_pkg, "reg", &getprop_rval, sizeof(getprop_rval)); _prom->cpu = getprop_rval; prom_debug("Booting CPU hw index = 0x%x\n", _prom->cpu); } static void __init prom_check_initrd(unsigned long r3, unsigned long r4) { #ifdef CONFIG_BLK_DEV_INITRD unsigned long offset = reloc_offset(); struct prom_t *_prom = PTRRELOC(&prom); if ( r3 && r4 && r4 != 0xdeadbeef) { u64 val; RELOC(prom_initrd_start) = (r3 >= KERNELBASE) ? __pa(r3) : r3; RELOC(prom_initrd_end) = RELOC(prom_initrd_start) + r4; val = (u64)RELOC(prom_initrd_start); prom_setprop(_prom->chosen, "linux,initrd-start", &val, sizeof(val)); val = (u64)RELOC(prom_initrd_end); prom_setprop(_prom->chosen, "linux,initrd-end", &val, sizeof(val)); reserve_mem(RELOC(prom_initrd_start), RELOC(prom_initrd_end) - RELOC(prom_initrd_start)); prom_debug("initrd_start=0x%x\n", RELOC(prom_initrd_start)); prom_debug("initrd_end=0x%x\n", RELOC(prom_initrd_end)); } #endif /* CONFIG_BLK_DEV_INITRD */ } /* * We enter here early on, when the Open Firmware prom is still * handling exceptions and the MMU hash table for us. */ unsigned long __init prom_init(unsigned long r3, unsigned long r4, unsigned long pp, unsigned long r6, unsigned long r7) { unsigned long offset = reloc_offset(); struct prom_t *_prom = PTRRELOC(&prom); unsigned long phys = KERNELBASE - offset; u32 getprop_rval; /* * First zero the BSS */ memset(PTRRELOC(&__bss_start), 0, __bss_stop - __bss_start); /* * Init interface to Open Firmware, get some node references, * like /chosen */ prom_init_client_services(pp); /* * Init prom stdout device */ prom_init_stdout(); prom_debug("klimit=0x%x\n", RELOC(klimit)); prom_debug("offset=0x%x\n", offset); /* * Check for an initrd */ prom_check_initrd(r3, r4); /* * Get default machine type. At this point, we do not differenciate * between pSeries SMP and pSeries LPAR */ RELOC(of_platform) = prom_find_machine_type(); getprop_rval = RELOC(of_platform); prom_setprop(_prom->chosen, "linux,platform", &getprop_rval, sizeof(getprop_rval)); /* * On pSeries, inform the firmware about our capabilities */ if (RELOC(of_platform) & PLATFORM_PSERIES) prom_send_capabilities(); /* * On pSeries and BPA, copy the CPU hold code */ if (RELOC(of_platform) & (PLATFORM_PSERIES | PLATFORM_BPA)) copy_and_flush(0, KERNELBASE - offset, 0x100, 0); /* * Get memory cells format */ getprop_rval = 1; prom_getprop(_prom->root, "#size-cells", &getprop_rval, sizeof(getprop_rval)); _prom->root_size_cells = getprop_rval; getprop_rval = 2; prom_getprop(_prom->root, "#address-cells", &getprop_rval, sizeof(getprop_rval)); _prom->root_addr_cells = getprop_rval; /* * Do early parsing of command line */ early_cmdline_parse(); /* * Initialize memory management within prom_init */ prom_init_mem(); /* * Determine which cpu is actually running right _now_ */ prom_find_boot_cpu(); /* * Initialize display devices */ prom_check_displays(); /* * Initialize IOMMU (TCE tables) on pSeries. Do that before anything else * that uses the allocator, we need to make sure we get the top of memory * available for us here... */ if (RELOC(of_platform) == PLATFORM_PSERIES) prom_initialize_tce_table(); /* * On non-powermacs, try to instantiate RTAS and puts all CPUs * in spin-loops. PowerMacs don't have a working RTAS and use * a different way to spin CPUs */ if (RELOC(of_platform) != PLATFORM_POWERMAC) { prom_instantiate_rtas(); prom_hold_cpus(); } /* * Fill in some infos for use by the kernel later on */ if (RELOC(ppc64_iommu_off)) prom_setprop(_prom->chosen, "linux,iommu-off", NULL, 0); if (RELOC(iommu_force_on)) prom_setprop(_prom->chosen, "linux,iommu-force-on", NULL, 0); if (RELOC(prom_memory_limit)) prom_setprop(_prom->chosen, "linux,memory-limit", PTRRELOC(&prom_memory_limit), sizeof(RELOC(prom_memory_limit))); if (RELOC(prom_tce_alloc_start)) { prom_setprop(_prom->chosen, "linux,tce-alloc-start", PTRRELOC(&prom_tce_alloc_start), sizeof(RELOC(prom_tce_alloc_start))); prom_setprop(_prom->chosen, "linux,tce-alloc-end", PTRRELOC(&prom_tce_alloc_end), sizeof(RELOC(prom_tce_alloc_end))); } /* * Fixup any known bugs in the device-tree */ fixup_device_tree(); /* * Now finally create the flattened device-tree */ prom_printf("copying OF device tree ...\n"); flatten_device_tree(); /* in case stdin is USB and still active on IBM machines... */ prom_close_stdin(); /* * Call OF "quiesce" method to shut down pending DMA's from * devices etc... */ prom_printf("Calling quiesce ...\n"); call_prom("quiesce", 0, 0); /* * And finally, call the kernel passing it the flattened device * tree and NULL as r5, thus triggering the new entry point which * is common to us and kexec */ prom_printf("returning from prom_init\n"); prom_debug("->dt_header_start=0x%x\n", RELOC(dt_header_start)); prom_debug("->phys=0x%x\n", phys); __start(RELOC(dt_header_start), phys, 0); return 0; }