/* * iSeries_pci.c * * Copyright (C) 2001 Allan Trautman, IBM Corporation * * iSeries specific routines for PCI. * * Based on code from pci.c and iSeries_pci.c 32bit * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pci.h" extern unsigned long io_page_mask; /* * Forward declares of prototypes. */ static struct iSeries_Device_Node *find_Device_Node(int bus, int devfn); static void scan_PHB_slots(struct pci_controller *Phb); static void scan_EADS_bridge(HvBusNumber Bus, HvSubBusNumber SubBus, int IdSel); static int scan_bridge_slot(HvBusNumber Bus, struct HvCallPci_BridgeInfo *Info); LIST_HEAD(iSeries_Global_Device_List); static int DeviceCount; /* Counters and control flags. */ static long Pci_Io_Read_Count; static long Pci_Io_Write_Count; #if 0 static long Pci_Cfg_Read_Count; static long Pci_Cfg_Write_Count; #endif static long Pci_Error_Count; static int Pci_Retry_Max = 3; /* Only retry 3 times */ static int Pci_Error_Flag = 1; /* Set Retry Error on. */ static struct pci_ops iSeries_pci_ops; /* * Table defines * Each Entry size is 4 MB * 1024 Entries = 4GB I/O address space. */ #define IOMM_TABLE_MAX_ENTRIES 1024 #define IOMM_TABLE_ENTRY_SIZE 0x0000000000400000UL #define BASE_IO_MEMORY 0xE000000000000000UL static unsigned long max_io_memory = 0xE000000000000000UL; static long current_iomm_table_entry; /* * Lookup Tables. */ static struct iSeries_Device_Node **iomm_table; static u8 *iobar_table; /* * Static and Global variables */ static char *pci_io_text = "iSeries PCI I/O"; static DEFINE_SPINLOCK(iomm_table_lock); /* * iomm_table_initialize * * Allocates and initalizes the Address Translation Table and Bar * Tables to get them ready for use. Must be called before any * I/O space is handed out to the device BARs. */ static void iomm_table_initialize(void) { spin_lock(&iomm_table_lock); iomm_table = kmalloc(sizeof(*iomm_table) * IOMM_TABLE_MAX_ENTRIES, GFP_KERNEL); iobar_table = kmalloc(sizeof(*iobar_table) * IOMM_TABLE_MAX_ENTRIES, GFP_KERNEL); spin_unlock(&iomm_table_lock); if ((iomm_table == NULL) || (iobar_table == NULL)) panic("PCI: I/O tables allocation failed.\n"); } /* * iomm_table_allocate_entry * * Adds pci_dev entry in address translation table * * - Allocates the number of entries required in table base on BAR * size. * - Allocates starting at BASE_IO_MEMORY and increases. * - The size is round up to be a multiple of entry size. * - CurrentIndex is incremented to keep track of the last entry. * - Builds the resource entry for allocated BARs. */ static void iomm_table_allocate_entry(struct pci_dev *dev, int bar_num) { struct resource *bar_res = &dev->resource[bar_num]; long bar_size = pci_resource_len(dev, bar_num); /* * No space to allocate, quick exit, skip Allocation. */ if (bar_size == 0) return; /* * Set Resource values. */ spin_lock(&iomm_table_lock); bar_res->name = pci_io_text; bar_res->start = IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry; bar_res->start += BASE_IO_MEMORY; bar_res->end = bar_res->start + bar_size - 1; /* * Allocate the number of table entries needed for BAR. */ while (bar_size > 0 ) { iomm_table[current_iomm_table_entry] = dev->sysdata; iobar_table[current_iomm_table_entry] = bar_num; bar_size -= IOMM_TABLE_ENTRY_SIZE; ++current_iomm_table_entry; } max_io_memory = BASE_IO_MEMORY + (IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry); spin_unlock(&iomm_table_lock); } /* * allocate_device_bars * * - Allocates ALL pci_dev BAR's and updates the resources with the * BAR value. BARS with zero length will have the resources * The HvCallPci_getBarParms is used to get the size of the BAR * space. It calls iomm_table_allocate_entry to allocate * each entry. * - Loops through The Bar resources(0 - 5) including the ROM * is resource(6). */ static void allocate_device_bars(struct pci_dev *dev) { struct resource *bar_res; int bar_num; for (bar_num = 0; bar_num <= PCI_ROM_RESOURCE; ++bar_num) { bar_res = &dev->resource[bar_num]; iomm_table_allocate_entry(dev, bar_num); } } /* * Log error information to system console. * Filter out the device not there errors. * PCI: EADs Connect Failed 0x18.58.10 Rc: 0x00xx * PCI: Read Vendor Failed 0x18.58.10 Rc: 0x00xx * PCI: Connect Bus Unit Failed 0x18.58.10 Rc: 0x00xx */ static void pci_Log_Error(char *Error_Text, int Bus, int SubBus, int AgentId, int HvRc) { if (HvRc == 0x0302) return; printk(KERN_ERR "PCI: %s Failed: 0x%02X.%02X.%02X Rc: 0x%04X", Error_Text, Bus, SubBus, AgentId, HvRc); } /* * build_device_node(u16 Bus, int SubBus, u8 DevFn) */ static struct iSeries_Device_Node *build_device_node(HvBusNumber Bus, HvSubBusNumber SubBus, int AgentId, int Function) { struct iSeries_Device_Node *node; PPCDBG(PPCDBG_BUSWALK, "-build_device_node 0x%02X.%02X.%02X Function: %02X\n", Bus, SubBus, AgentId, Function); node = kmalloc(sizeof(struct iSeries_Device_Node), GFP_KERNEL); if (node == NULL) return NULL; memset(node, 0, sizeof(struct iSeries_Device_Node)); list_add_tail(&node->Device_List, &iSeries_Global_Device_List); #if 0 node->DsaAddr = ((u64)Bus << 48) + ((u64)SubBus << 40) + ((u64)0x10 << 32); #endif node->DsaAddr.DsaAddr = 0; node->DsaAddr.Dsa.busNumber = Bus; node->DsaAddr.Dsa.subBusNumber = SubBus; node->DsaAddr.Dsa.deviceId = 0x10; node->DevFn = PCI_DEVFN(ISERIES_ENCODE_DEVICE(AgentId), Function); return node; } /* * unsigned long __init find_and_init_phbs(void) * * Description: * This function checks for all possible system PCI host bridges that connect * PCI buses. The system hypervisor is queried as to the guest partition * ownership status. A pci_controller is built for any bus which is partially * owned or fully owned by this guest partition. */ unsigned long __init find_and_init_phbs(void) { struct pci_controller *phb; HvBusNumber bus; PPCDBG(PPCDBG_BUSWALK, "find_and_init_phbs Entry\n"); /* Check all possible buses. */ for (bus = 0; bus < 256; bus++) { int ret = HvCallXm_testBus(bus); if (ret == 0) { printk("bus %d appears to exist\n", bus); phb = (struct pci_controller *)kmalloc(sizeof(struct pci_controller), GFP_KERNEL); if (phb == NULL) return -ENOMEM; pci_setup_pci_controller(phb); phb->pci_mem_offset = phb->local_number = bus; phb->first_busno = bus; phb->last_busno = bus; phb->ops = &iSeries_pci_ops; PPCDBG(PPCDBG_BUSWALK, "PCI:Create iSeries pci_controller(%p), Bus: %04X\n", phb, bus); /* Find and connect the devices. */ scan_PHB_slots(phb); } /* * Check for Unexpected Return code, a clue that something * has gone wrong. */ else if (ret != 0x0301) printk(KERN_ERR "Unexpected Return on Probe(0x%04X): 0x%04X", bus, ret); } return 0; } /* * iSeries_pcibios_init * * Chance to initialize and structures or variable before PCI Bus walk. */ void iSeries_pcibios_init(void) { PPCDBG(PPCDBG_BUSWALK, "iSeries_pcibios_init Entry.\n"); iomm_table_initialize(); find_and_init_phbs(); io_page_mask = -1; PPCDBG(PPCDBG_BUSWALK, "iSeries_pcibios_init Exit.\n"); } /* * iSeries_pci_final_fixup(void) */ void __init iSeries_pci_final_fixup(void) { struct pci_dev *pdev = NULL; struct iSeries_Device_Node *node; int DeviceCount = 0; PPCDBG(PPCDBG_BUSWALK, "iSeries_pcibios_fixup Entry.\n"); /* Fix up at the device node and pci_dev relationship */ mf_display_src(0xC9000100); printk("pcibios_final_fixup\n"); for_each_pci_dev(pdev) { node = find_Device_Node(pdev->bus->number, pdev->devfn); printk("pci dev %p (%x.%x), node %p\n", pdev, pdev->bus->number, pdev->devfn, node); if (node != NULL) { ++DeviceCount; pdev->sysdata = (void *)node; node->PciDev = pdev; PPCDBG(PPCDBG_BUSWALK, "pdev 0x%p <==> DevNode 0x%p\n", pdev, node); allocate_device_bars(pdev); iSeries_Device_Information(pdev, DeviceCount); iommu_devnode_init_iSeries(node); } else printk("PCI: Device Tree not found for 0x%016lX\n", (unsigned long)pdev); pdev->irq = node->Irq; } iSeries_activate_IRQs(); mf_display_src(0xC9000200); } void pcibios_fixup_bus(struct pci_bus *PciBus) { PPCDBG(PPCDBG_BUSWALK, "iSeries_pcibios_fixup_bus(0x%04X) Entry.\n", PciBus->number); } void pcibios_fixup_resources(struct pci_dev *pdev) { PPCDBG(PPCDBG_BUSWALK, "fixup_resources pdev %p\n", pdev); } /* * Loop through each node function to find usable EADs bridges. */ static void scan_PHB_slots(struct pci_controller *Phb) { struct HvCallPci_DeviceInfo *DevInfo; HvBusNumber bus = Phb->local_number; /* System Bus */ const HvSubBusNumber SubBus = 0; /* EADs is always 0. */ int HvRc = 0; int IdSel; const int MaxAgents = 8; DevInfo = (struct HvCallPci_DeviceInfo*) kmalloc(sizeof(struct HvCallPci_DeviceInfo), GFP_KERNEL); if (DevInfo == NULL) return; /* * Probe for EADs Bridges */ for (IdSel = 1; IdSel < MaxAgents; ++IdSel) { HvRc = HvCallPci_getDeviceInfo(bus, SubBus, IdSel, ISERIES_HV_ADDR(DevInfo), sizeof(struct HvCallPci_DeviceInfo)); if (HvRc == 0) { if (DevInfo->deviceType == HvCallPci_NodeDevice) scan_EADS_bridge(bus, SubBus, IdSel); else printk("PCI: Invalid System Configuration(0x%02X)" " for bus 0x%02x id 0x%02x.\n", DevInfo->deviceType, bus, IdSel); } else pci_Log_Error("getDeviceInfo", bus, SubBus, IdSel, HvRc); } kfree(DevInfo); } static void scan_EADS_bridge(HvBusNumber bus, HvSubBusNumber SubBus, int IdSel) { struct HvCallPci_BridgeInfo *BridgeInfo; HvAgentId AgentId; int Function; int HvRc; BridgeInfo = (struct HvCallPci_BridgeInfo *) kmalloc(sizeof(struct HvCallPci_BridgeInfo), GFP_KERNEL); if (BridgeInfo == NULL) return; /* Note: hvSubBus and irq is always be 0 at this level! */ for (Function = 0; Function < 8; ++Function) { AgentId = ISERIES_PCI_AGENTID(IdSel, Function); HvRc = HvCallXm_connectBusUnit(bus, SubBus, AgentId, 0); if (HvRc == 0) { printk("found device at bus %d idsel %d func %d (AgentId %x)\n", bus, IdSel, Function, AgentId); /* Connect EADs: 0x18.00.12 = 0x00 */ PPCDBG(PPCDBG_BUSWALK, "PCI:Connect EADs: 0x%02X.%02X.%02X\n", bus, SubBus, AgentId); HvRc = HvCallPci_getBusUnitInfo(bus, SubBus, AgentId, ISERIES_HV_ADDR(BridgeInfo), sizeof(struct HvCallPci_BridgeInfo)); if (HvRc == 0) { printk("bridge info: type %x subbus %x maxAgents %x maxsubbus %x logslot %x\n", BridgeInfo->busUnitInfo.deviceType, BridgeInfo->subBusNumber, BridgeInfo->maxAgents, BridgeInfo->maxSubBusNumber, BridgeInfo->logicalSlotNumber); PPCDBG(PPCDBG_BUSWALK, "PCI: BridgeInfo, Type:0x%02X, SubBus:0x%02X, MaxAgents:0x%02X, MaxSubBus: 0x%02X, LSlot: 0x%02X\n", BridgeInfo->busUnitInfo.deviceType, BridgeInfo->subBusNumber, BridgeInfo->maxAgents, BridgeInfo->maxSubBusNumber, BridgeInfo->logicalSlotNumber); if (BridgeInfo->busUnitInfo.deviceType == HvCallPci_BridgeDevice) { /* Scan_Bridge_Slot...: 0x18.00.12 */ scan_bridge_slot(bus, BridgeInfo); } else printk("PCI: Invalid Bridge Configuration(0x%02X)", BridgeInfo->busUnitInfo.deviceType); } } else if (HvRc != 0x000B) pci_Log_Error("EADs Connect", bus, SubBus, AgentId, HvRc); } kfree(BridgeInfo); } /* * This assumes that the node slot is always on the primary bus! */ static int scan_bridge_slot(HvBusNumber Bus, struct HvCallPci_BridgeInfo *BridgeInfo) { struct iSeries_Device_Node *node; HvSubBusNumber SubBus = BridgeInfo->subBusNumber; u16 VendorId = 0; int HvRc = 0; u8 Irq = 0; int IdSel = ISERIES_GET_DEVICE_FROM_SUBBUS(SubBus); int Function = ISERIES_GET_FUNCTION_FROM_SUBBUS(SubBus); HvAgentId EADsIdSel = ISERIES_PCI_AGENTID(IdSel, Function); /* iSeries_allocate_IRQ.: 0x18.00.12(0xA3) */ Irq = iSeries_allocate_IRQ(Bus, 0, EADsIdSel); PPCDBG(PPCDBG_BUSWALK, "PCI:- allocate and assign IRQ 0x%02X.%02X.%02X = 0x%02X\n", Bus, 0, EADsIdSel, Irq); /* * Connect all functions of any device found. */ for (IdSel = 1; IdSel <= BridgeInfo->maxAgents; ++IdSel) { for (Function = 0; Function < 8; ++Function) { HvAgentId AgentId = ISERIES_PCI_AGENTID(IdSel, Function); HvRc = HvCallXm_connectBusUnit(Bus, SubBus, AgentId, Irq); if (HvRc != 0) { pci_Log_Error("Connect Bus Unit", Bus, SubBus, AgentId, HvRc); continue; } HvRc = HvCallPci_configLoad16(Bus, SubBus, AgentId, PCI_VENDOR_ID, &VendorId); if (HvRc != 0) { pci_Log_Error("Read Vendor", Bus, SubBus, AgentId, HvRc); continue; } printk("read vendor ID: %x\n", VendorId); /* FoundDevice: 0x18.28.10 = 0x12AE */ PPCDBG(PPCDBG_BUSWALK, "PCI:- FoundDevice: 0x%02X.%02X.%02X = 0x%04X, irq %d\n", Bus, SubBus, AgentId, VendorId, Irq); HvRc = HvCallPci_configStore8(Bus, SubBus, AgentId, PCI_INTERRUPT_LINE, Irq); if (HvRc != 0) pci_Log_Error("PciCfgStore Irq Failed!", Bus, SubBus, AgentId, HvRc); ++DeviceCount; node = build_device_node(Bus, SubBus, EADsIdSel, Function); node->Irq = Irq; node->LogicalSlot = BridgeInfo->logicalSlotNumber; } /* for (Function = 0; Function < 8; ++Function) */ } /* for (IdSel = 1; IdSel <= MaxAgents; ++IdSel) */ return HvRc; } /* * I/0 Memory copy MUST use mmio commands on iSeries * To do; For performance, include the hv call directly */ void iSeries_memset_io(volatile void __iomem *dest, char c, size_t Count) { u8 ByteValue = c; long NumberOfBytes = Count; while (NumberOfBytes > 0) { iSeries_Write_Byte(ByteValue, dest++); -- NumberOfBytes; } } EXPORT_SYMBOL(iSeries_memset_io); void iSeries_memcpy_toio(volatile void __iomem *dest, void *source, size_t count) { char *src = source; long NumberOfBytes = count; while (NumberOfBytes > 0) { iSeries_Write_Byte(*src++, dest++); -- NumberOfBytes; } } EXPORT_SYMBOL(iSeries_memcpy_toio); void iSeries_memcpy_fromio(void *dest, const volatile void __iomem *src, size_t count) { char *dst = dest; long NumberOfBytes = count; while (NumberOfBytes > 0) { *dst++ = iSeries_Read_Byte(src++); -- NumberOfBytes; } } EXPORT_SYMBOL(iSeries_memcpy_fromio); /* * Look down the chain to find the matching Device Device */ static struct iSeries_Device_Node *find_Device_Node(int bus, int devfn) { struct list_head *pos; list_for_each(pos, &iSeries_Global_Device_List) { struct iSeries_Device_Node *node = list_entry(pos, struct iSeries_Device_Node, Device_List); if ((bus == ISERIES_BUS(node)) && (devfn == node->DevFn)) return node; } return NULL; } #if 0 /* * Returns the device node for the passed pci_dev * Sanity Check Node PciDev to passed pci_dev * If none is found, returns a NULL which the client must handle. */ static struct iSeries_Device_Node *get_Device_Node(struct pci_dev *pdev) { struct iSeries_Device_Node *node; node = pdev->sysdata; if (node == NULL || node->PciDev != pdev) node = find_Device_Node(pdev->bus->number, pdev->devfn); return node; } #endif /* * Config space read and write functions. * For now at least, we look for the device node for the bus and devfn * that we are asked to access. It may be possible to translate the devfn * to a subbus and deviceid more directly. */ static u64 hv_cfg_read_func[4] = { HvCallPciConfigLoad8, HvCallPciConfigLoad16, HvCallPciConfigLoad32, HvCallPciConfigLoad32 }; static u64 hv_cfg_write_func[4] = { HvCallPciConfigStore8, HvCallPciConfigStore16, HvCallPciConfigStore32, HvCallPciConfigStore32 }; /* * Read PCI config space */ static int iSeries_pci_read_config(struct pci_bus *bus, unsigned int devfn, int offset, int size, u32 *val) { struct iSeries_Device_Node *node = find_Device_Node(bus->number, devfn); u64 fn; struct HvCallPci_LoadReturn ret; if (node == NULL) return PCIBIOS_DEVICE_NOT_FOUND; if (offset > 255) { *val = ~0; return PCIBIOS_BAD_REGISTER_NUMBER; } fn = hv_cfg_read_func[(size - 1) & 3]; HvCall3Ret16(fn, &ret, node->DsaAddr.DsaAddr, offset, 0); if (ret.rc != 0) { *val = ~0; return PCIBIOS_DEVICE_NOT_FOUND; /* or something */ } *val = ret.value; return 0; } /* * Write PCI config space */ static int iSeries_pci_write_config(struct pci_bus *bus, unsigned int devfn, int offset, int size, u32 val) { struct iSeries_Device_Node *node = find_Device_Node(bus->number, devfn); u64 fn; u64 ret; if (node == NULL) return PCIBIOS_DEVICE_NOT_FOUND; if (offset > 255) return PCIBIOS_BAD_REGISTER_NUMBER; fn = hv_cfg_write_func[(size - 1) & 3]; ret = HvCall4(fn, node->DsaAddr.DsaAddr, offset, val, 0); if (ret != 0) return PCIBIOS_DEVICE_NOT_FOUND; return 0; } static struct pci_ops iSeries_pci_ops = { .read = iSeries_pci_read_config, .write = iSeries_pci_write_config }; /* * Check Return Code * -> On Failure, print and log information. * Increment Retry Count, if exceeds max, panic partition. * * PCI: Device 23.90 ReadL I/O Error( 0): 0x1234 * PCI: Device 23.90 ReadL Retry( 1) * PCI: Device 23.90 ReadL Retry Successful(1) */ static int CheckReturnCode(char *TextHdr, struct iSeries_Device_Node *DevNode, int *retry, u64 ret) { if (ret != 0) { ++Pci_Error_Count; (*retry)++; printk("PCI: %s: Device 0x%04X:%02X I/O Error(%2d): 0x%04X\n", TextHdr, DevNode->DsaAddr.Dsa.busNumber, DevNode->DevFn, *retry, (int)ret); /* * Bump the retry and check for retry count exceeded. * If, Exceeded, panic the system. */ if (((*retry) > Pci_Retry_Max) && (Pci_Error_Flag > 0)) { mf_display_src(0xB6000103); panic_timeout = 0; panic("PCI: Hardware I/O Error, SRC B6000103, " "Automatic Reboot Disabled.\n"); } return -1; /* Retry Try */ } return 0; } /* * Translate the I/O Address into a device node, bar, and bar offset. * Note: Make sure the passed variable end up on the stack to avoid * the exposure of being device global. */ static inline struct iSeries_Device_Node *xlate_iomm_address( const volatile void __iomem *IoAddress, u64 *dsaptr, u64 *BarOffsetPtr) { unsigned long OrigIoAddr; unsigned long BaseIoAddr; unsigned long TableIndex; struct iSeries_Device_Node *DevNode; OrigIoAddr = (unsigned long __force)IoAddress; if ((OrigIoAddr < BASE_IO_MEMORY) || (OrigIoAddr >= max_io_memory)) return NULL; BaseIoAddr = OrigIoAddr - BASE_IO_MEMORY; TableIndex = BaseIoAddr / IOMM_TABLE_ENTRY_SIZE; DevNode = iomm_table[TableIndex]; if (DevNode != NULL) { int barnum = iobar_table[TableIndex]; *dsaptr = DevNode->DsaAddr.DsaAddr | (barnum << 24); *BarOffsetPtr = BaseIoAddr % IOMM_TABLE_ENTRY_SIZE; } else panic("PCI: Invalid PCI IoAddress detected!\n"); return DevNode; } /* * Read MM I/O Instructions for the iSeries * On MM I/O error, all ones are returned and iSeries_pci_IoError is cal * else, data is returned in big Endian format. * * iSeries_Read_Byte = Read Byte ( 8 bit) * iSeries_Read_Word = Read Word (16 bit) * iSeries_Read_Long = Read Long (32 bit) */ u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress) { u64 BarOffset; u64 dsa; int retry = 0; struct HvCallPci_LoadReturn ret; struct iSeries_Device_Node *DevNode = xlate_iomm_address(IoAddress, &dsa, &BarOffset); if (DevNode == NULL) { static unsigned long last_jiffies; static int num_printed; if ((jiffies - last_jiffies) > 60 * HZ) { last_jiffies = jiffies; num_printed = 0; } if (num_printed++ < 10) printk(KERN_ERR "iSeries_Read_Byte: invalid access at IO address %p\n", IoAddress); return 0xff; } do { ++Pci_Io_Read_Count; HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, BarOffset, 0); } while (CheckReturnCode("RDB", DevNode, &retry, ret.rc) != 0); return (u8)ret.value; } EXPORT_SYMBOL(iSeries_Read_Byte); u16 iSeries_Read_Word(const volatile void __iomem *IoAddress) { u64 BarOffset; u64 dsa; int retry = 0; struct HvCallPci_LoadReturn ret; struct iSeries_Device_Node *DevNode = xlate_iomm_address(IoAddress, &dsa, &BarOffset); if (DevNode == NULL) { static unsigned long last_jiffies; static int num_printed; if ((jiffies - last_jiffies) > 60 * HZ) { last_jiffies = jiffies; num_printed = 0; } if (num_printed++ < 10) printk(KERN_ERR "iSeries_Read_Word: invalid access at IO address %p\n", IoAddress); return 0xffff; } do { ++Pci_Io_Read_Count; HvCall3Ret16(HvCallPciBarLoad16, &ret, dsa, BarOffset, 0); } while (CheckReturnCode("RDW", DevNode, &retry, ret.rc) != 0); return swab16((u16)ret.value); } EXPORT_SYMBOL(iSeries_Read_Word); u32 iSeries_Read_Long(const volatile void __iomem *IoAddress) { u64 BarOffset; u64 dsa; int retry = 0; struct HvCallPci_LoadReturn ret; struct iSeries_Device_Node *DevNode = xlate_iomm_address(IoAddress, &dsa, &BarOffset); if (DevNode == NULL) { static unsigned long last_jiffies; static int num_printed; if ((jiffies - last_jiffies) > 60 * HZ) { last_jiffies = jiffies; num_printed = 0; } if (num_printed++ < 10) printk(KERN_ERR "iSeries_Read_Long: invalid access at IO address %p\n", IoAddress); return 0xffffffff; } do { ++Pci_Io_Read_Count; HvCall3Ret16(HvCallPciBarLoad32, &ret, dsa, BarOffset, 0); } while (CheckReturnCode("RDL", DevNode, &retry, ret.rc) != 0); return swab32((u32)ret.value); } EXPORT_SYMBOL(iSeries_Read_Long); /* * Write MM I/O Instructions for the iSeries * * iSeries_Write_Byte = Write Byte (8 bit) * iSeries_Write_Word = Write Word(16 bit) * iSeries_Write_Long = Write Long(32 bit) */ void iSeries_Write_Byte(u8 data, volatile void __iomem *IoAddress) { u64 BarOffset; u64 dsa; int retry = 0; u64 rc; struct iSeries_Device_Node *DevNode = xlate_iomm_address(IoAddress, &dsa, &BarOffset); if (DevNode == NULL) { static unsigned long last_jiffies; static int num_printed; if ((jiffies - last_jiffies) > 60 * HZ) { last_jiffies = jiffies; num_printed = 0; } if (num_printed++ < 10) printk(KERN_ERR "iSeries_Write_Byte: invalid access at IO address %p\n", IoAddress); return; } do { ++Pci_Io_Write_Count; rc = HvCall4(HvCallPciBarStore8, dsa, BarOffset, data, 0); } while (CheckReturnCode("WWB", DevNode, &retry, rc) != 0); } EXPORT_SYMBOL(iSeries_Write_Byte); void iSeries_Write_Word(u16 data, volatile void __iomem *IoAddress) { u64 BarOffset; u64 dsa; int retry = 0; u64 rc; struct iSeries_Device_Node *DevNode = xlate_iomm_address(IoAddress, &dsa, &BarOffset); if (DevNode == NULL) { static unsigned long last_jiffies; static int num_printed; if ((jiffies - last_jiffies) > 60 * HZ) { last_jiffies = jiffies; num_printed = 0; } if (num_printed++ < 10) printk(KERN_ERR "iSeries_Write_Word: invalid access at IO address %p\n", IoAddress); return; } do { ++Pci_Io_Write_Count; rc = HvCall4(HvCallPciBarStore16, dsa, BarOffset, swab16(data), 0); } while (CheckReturnCode("WWW", DevNode, &retry, rc) != 0); } EXPORT_SYMBOL(iSeries_Write_Word); void iSeries_Write_Long(u32 data, volatile void __iomem *IoAddress) { u64 BarOffset; u64 dsa; int retry = 0; u64 rc; struct iSeries_Device_Node *DevNode = xlate_iomm_address(IoAddress, &dsa, &BarOffset); if (DevNode == NULL) { static unsigned long last_jiffies; static int num_printed; if ((jiffies - last_jiffies) > 60 * HZ) { last_jiffies = jiffies; num_printed = 0; } if (num_printed++ < 10) printk(KERN_ERR "iSeries_Write_Long: invalid access at IO address %p\n", IoAddress); return; } do { ++Pci_Io_Write_Count; rc = HvCall4(HvCallPciBarStore32, dsa, BarOffset, swab32(data), 0); } while (CheckReturnCode("WWL", DevNode, &retry, rc) != 0); } EXPORT_SYMBOL(iSeries_Write_Long);