/* * Copyright 2007 David Gibson, IBM Corporation. * * Based on earlier code: * Matt Porter * Copyright 2002-2005 MontaVista Software Inc. * * Eugene Surovegin or * Copyright (c) 2003, 2004 Zultys Technologies * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include "types.h" #include "string.h" #include "stdio.h" #include "ops.h" #include "reg.h" #include "dcr.h" static unsigned long chip_11_errata(unsigned long memsize) { unsigned long pvr; pvr = mfpvr(); switch (pvr & 0xf0000ff0) { case 0x40000850: case 0x400008d0: case 0x200008d0: memsize -= 4096; break; default: break; } return memsize; } /* Read the 4xx SDRAM controller to get size of system memory. */ void ibm4xx_sdram_fixup_memsize(void) { int i; unsigned long memsize, bank_config; memsize = 0; for (i = 0; i < ARRAY_SIZE(sdram_bxcr); i++) { bank_config = SDRAM0_READ(sdram_bxcr[i]); if (bank_config & SDRAM_CONFIG_BANK_ENABLE) memsize += SDRAM_CONFIG_BANK_SIZE(bank_config); } memsize = chip_11_errata(memsize); dt_fixup_memory(0, memsize); } /* Read the 440SPe MQ controller to get size of system memory. */ #define DCRN_MQ0_B0BAS 0x40 #define DCRN_MQ0_B1BAS 0x41 #define DCRN_MQ0_B2BAS 0x42 #define DCRN_MQ0_B3BAS 0x43 static u64 ibm440spe_decode_bas(u32 bas) { u64 base = ((u64)(bas & 0xFFE00000u)) << 2; /* open coded because I'm paranoid about invalid values */ switch ((bas >> 4) & 0xFFF) { case 0: return 0; case 0xffc: return base + 0x000800000ull; case 0xff8: return base + 0x001000000ull; case 0xff0: return base + 0x002000000ull; case 0xfe0: return base + 0x004000000ull; case 0xfc0: return base + 0x008000000ull; case 0xf80: return base + 0x010000000ull; case 0xf00: return base + 0x020000000ull; case 0xe00: return base + 0x040000000ull; case 0xc00: return base + 0x080000000ull; case 0x800: return base + 0x100000000ull; } printf("Memory BAS value 0x%08x unsupported !\n", bas); return 0; } void ibm440spe_fixup_memsize(void) { u64 banktop, memsize = 0; /* Ultimately, we should directly construct the memory node * so we are able to handle holes in the memory address space */ banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B0BAS)); if (banktop > memsize) memsize = banktop; banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B1BAS)); if (banktop > memsize) memsize = banktop; banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B2BAS)); if (banktop > memsize) memsize = banktop; banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B3BAS)); if (banktop > memsize) memsize = banktop; dt_fixup_memory(0, memsize); } /* 4xx DDR1/2 Denali memory controller support */ /* DDR0 registers */ #define DDR0_02 2 #define DDR0_08 8 #define DDR0_10 10 #define DDR0_14 14 #define DDR0_42 42 #define DDR0_43 43 /* DDR0_02 */ #define DDR_START 0x1 #define DDR_START_SHIFT 0 #define DDR_MAX_CS_REG 0x3 #define DDR_MAX_CS_REG_SHIFT 24 #define DDR_MAX_COL_REG 0xf #define DDR_MAX_COL_REG_SHIFT 16 #define DDR_MAX_ROW_REG 0xf #define DDR_MAX_ROW_REG_SHIFT 8 /* DDR0_08 */ #define DDR_DDR2_MODE 0x1 #define DDR_DDR2_MODE_SHIFT 0 /* DDR0_10 */ #define DDR_CS_MAP 0x3 #define DDR_CS_MAP_SHIFT 8 /* DDR0_14 */ #define DDR_REDUC 0x1 #define DDR_REDUC_SHIFT 16 /* DDR0_42 */ #define DDR_APIN 0x7 #define DDR_APIN_SHIFT 24 /* DDR0_43 */ #define DDR_COL_SZ 0x7 #define DDR_COL_SZ_SHIFT 8 #define DDR_BANK8 0x1 #define DDR_BANK8_SHIFT 0 #define DDR_GET_VAL(val, mask, shift) (((val) >> (shift)) & (mask)) /* * Some U-Boot versions set the number of chipselects to two * for Sequoia/Rainier boards while they only have one chipselect * hardwired. Hardcode the number of chipselects to one * for sequioa/rainer board models or read the actual value * from the memory controller register DDR0_10 otherwise. */ static inline u32 ibm4xx_denali_get_cs(void) { void *devp; char model[64]; u32 val, cs; devp = finddevice("/"); if (!devp) goto read_cs; if (getprop(devp, "model", model, sizeof(model)) <= 0) goto read_cs; model[sizeof(model)-1] = 0; if (!strcmp(model, "amcc,sequoia") || !strcmp(model, "amcc,rainier")) return 1; read_cs: /* get CS value */ val = SDRAM0_READ(DDR0_10); val = DDR_GET_VAL(val, DDR_CS_MAP, DDR_CS_MAP_SHIFT); cs = 0; while (val) { if (val & 0x1) cs++; val = val >> 1; } return cs; } void ibm4xx_denali_fixup_memsize(void) { u32 val, max_cs, max_col, max_row; u32 cs, col, row, bank, dpath; unsigned long memsize; val = SDRAM0_READ(DDR0_02); if (!DDR_GET_VAL(val, DDR_START, DDR_START_SHIFT)) fatal("DDR controller is not initialized\n"); /* get maximum cs col and row values */ max_cs = DDR_GET_VAL(val, DDR_MAX_CS_REG, DDR_MAX_CS_REG_SHIFT); max_col = DDR_GET_VAL(val, DDR_MAX_COL_REG, DDR_MAX_COL_REG_SHIFT); max_row = DDR_GET_VAL(val, DDR_MAX_ROW_REG, DDR_MAX_ROW_REG_SHIFT); cs = ibm4xx_denali_get_cs(); if (!cs) fatal("No memory installed\n"); if (cs > max_cs) fatal("DDR wrong CS configuration\n"); /* get data path bytes */ val = SDRAM0_READ(DDR0_14); if (DDR_GET_VAL(val, DDR_REDUC, DDR_REDUC_SHIFT)) dpath = 4; /* 32 bits */ else dpath = 8; /* 64 bits */ /* get address pins (rows) */ val = SDRAM0_READ(DDR0_42); row = DDR_GET_VAL(val, DDR_APIN, DDR_APIN_SHIFT); if (row > max_row) fatal("DDR wrong APIN configuration\n"); row = max_row - row; /* get collomn size and banks */ val = SDRAM0_READ(DDR0_43); col = DDR_GET_VAL(val, DDR_COL_SZ, DDR_COL_SZ_SHIFT); if (col > max_col) fatal("DDR wrong COL configuration\n"); col = max_col - col; if (DDR_GET_VAL(val, DDR_BANK8, DDR_BANK8_SHIFT)) bank = 8; /* 8 banks */ else bank = 4; /* 4 banks */ memsize = cs * (1 << (col+row)) * bank * dpath; memsize = chip_11_errata(memsize); dt_fixup_memory(0, memsize); } #define SPRN_DBCR0_40X 0x3F2 #define SPRN_DBCR0_44X 0x134 #define DBCR0_RST_SYSTEM 0x30000000 void ibm44x_dbcr_reset(void) { unsigned long tmp; asm volatile ( "mfspr %0,%1\n" "oris %0,%0,%2@h\n" "mtspr %1,%0" : "=&r"(tmp) : "i"(SPRN_DBCR0_44X), "i"(DBCR0_RST_SYSTEM) ); } void ibm40x_dbcr_reset(void) { unsigned long tmp; asm volatile ( "mfspr %0,%1\n" "oris %0,%0,%2@h\n" "mtspr %1,%0" : "=&r"(tmp) : "i"(SPRN_DBCR0_40X), "i"(DBCR0_RST_SYSTEM) ); } #define EMAC_RESET 0x20000000 void ibm4xx_quiesce_eth(u32 *emac0, u32 *emac1) { /* Quiesce the MAL and EMAC(s) since PIBS/OpenBIOS don't * do this for us */ if (emac0) *emac0 = EMAC_RESET; if (emac1) *emac1 = EMAC_RESET; mtdcr(DCRN_MAL0_CFG, MAL_RESET); while (mfdcr(DCRN_MAL0_CFG) & MAL_RESET) ; /* loop until reset takes effect */ } /* Read 4xx EBC bus bridge registers to get mappings of the peripheral * banks into the OPB address space */ void ibm4xx_fixup_ebc_ranges(const char *ebc) { void *devp; u32 bxcr; u32 ranges[EBC_NUM_BANKS*4]; u32 *p = ranges; int i; for (i = 0; i < EBC_NUM_BANKS; i++) { mtdcr(DCRN_EBC0_CFGADDR, EBC_BXCR(i)); bxcr = mfdcr(DCRN_EBC0_CFGDATA); if ((bxcr & EBC_BXCR_BU) != EBC_BXCR_BU_OFF) { *p++ = i; *p++ = 0; *p++ = bxcr & EBC_BXCR_BAS; *p++ = EBC_BXCR_BANK_SIZE(bxcr); } } devp = finddevice(ebc); if (! devp) fatal("Couldn't locate EBC node %s\n\r", ebc); setprop(devp, "ranges", ranges, (p - ranges) * sizeof(u32)); } /* Calculate 440GP clocks */ void ibm440gp_fixup_clocks(unsigned int sys_clk, unsigned int ser_clk) { u32 sys0 = mfdcr(DCRN_CPC0_SYS0); u32 cr0 = mfdcr(DCRN_CPC0_CR0); u32 cpu, plb, opb, ebc, tb, uart0, uart1, m; u32 opdv = CPC0_SYS0_OPDV(sys0); u32 epdv = CPC0_SYS0_EPDV(sys0); if (sys0 & CPC0_SYS0_BYPASS) { /* Bypass system PLL */ cpu = plb = sys_clk; } else { if (sys0 & CPC0_SYS0_EXTSL) /* PerClk */ m = CPC0_SYS0_FWDVB(sys0) * opdv * epdv; else /* CPU clock */ m = CPC0_SYS0_FBDV(sys0) * CPC0_SYS0_FWDVA(sys0); cpu = sys_clk * m / CPC0_SYS0_FWDVA(sys0); plb = sys_clk * m / CPC0_SYS0_FWDVB(sys0); } opb = plb / opdv; ebc = opb / epdv; /* FIXME: Check if this is for all 440GP, or just Ebony */ if ((mfpvr() & 0xf0000fff) == 0x40000440) /* Rev. B 440GP, use external system clock */ tb = sys_clk; else /* Rev. C 440GP, errata force us to use internal clock */ tb = cpu; if (cr0 & CPC0_CR0_U0EC) /* External UART clock */ uart0 = ser_clk; else /* Internal UART clock */ uart0 = plb / CPC0_CR0_UDIV(cr0); if (cr0 & CPC0_CR0_U1EC) /* External UART clock */ uart1 = ser_clk; else /* Internal UART clock */ uart1 = plb / CPC0_CR0_UDIV(cr0); printf("PPC440GP: SysClk = %dMHz (%x)\n\r", (sys_clk + 500000) / 1000000, sys_clk); dt_fixup_cpu_clocks(cpu, tb, 0); dt_fixup_clock("/plb", plb); dt_fixup_clock("/plb/opb", opb); dt_fixup_clock("/plb/opb/ebc", ebc); dt_fixup_clock("/plb/opb/serial@40000200", uart0); dt_fixup_clock("/plb/opb/serial@40000300", uart1); } #define SPRN_CCR1 0x378 static inline u32 __fix_zero(u32 v, u32 def) { return v ? v : def; } static unsigned int __ibm440eplike_fixup_clocks(unsigned int sys_clk, unsigned int tmr_clk, int per_clk_from_opb) { /* PLL config */ u32 pllc = CPR0_READ(DCRN_CPR0_PLLC); u32 plld = CPR0_READ(DCRN_CPR0_PLLD); /* Dividers */ u32 fbdv = __fix_zero((plld >> 24) & 0x1f, 32); u32 fwdva = __fix_zero((plld >> 16) & 0xf, 16); u32 fwdvb = __fix_zero((plld >> 8) & 7, 8); u32 lfbdv = __fix_zero(plld & 0x3f, 64); u32 pradv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PRIMAD) >> 24) & 7, 8); u32 prbdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PRIMBD) >> 24) & 7, 8); u32 opbdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_OPBD) >> 24) & 3, 4); u32 perdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PERD) >> 24) & 3, 4); /* Input clocks for primary dividers */ u32 clk_a, clk_b; /* Resulting clocks */ u32 cpu, plb, opb, ebc, vco; /* Timebase */ u32 ccr1, tb = tmr_clk; if (pllc & 0x40000000) { u32 m; /* Feedback path */ switch ((pllc >> 24) & 7) { case 0: /* PLLOUTx */ m = ((pllc & 0x20000000) ? fwdvb : fwdva) * lfbdv; break; case 1: /* CPU */ m = fwdva * pradv0; break; case 5: /* PERClk */ m = fwdvb * prbdv0 * opbdv0 * perdv0; break; default: printf("WARNING ! Invalid PLL feedback source !\n"); goto bypass; } m *= fbdv; vco = sys_clk * m; clk_a = vco / fwdva; clk_b = vco / fwdvb; } else { bypass: /* Bypass system PLL */ vco = 0; clk_a = clk_b = sys_clk; } cpu = clk_a / pradv0; plb = clk_b / prbdv0; opb = plb / opbdv0; ebc = (per_clk_from_opb ? opb : plb) / perdv0; /* Figure out timebase. Either CPU or default TmrClk */ ccr1 = mfspr(SPRN_CCR1); /* If passed a 0 tmr_clk, force CPU clock */ if (tb == 0) { ccr1 &= ~0x80u; mtspr(SPRN_CCR1, ccr1); } if ((ccr1 & 0x0080) == 0) tb = cpu; dt_fixup_cpu_clocks(cpu, tb, 0); dt_fixup_clock("/plb", plb); dt_fixup_clock("/plb/opb", opb); dt_fixup_clock("/plb/opb/ebc", ebc); return plb; } static void eplike_fixup_uart_clk(int index, const char *path, unsigned int ser_clk, unsigned int plb_clk) { unsigned int sdr; unsigned int clock; switch (index) { case 0: sdr = SDR0_READ(DCRN_SDR0_UART0); break; case 1: sdr = SDR0_READ(DCRN_SDR0_UART1); break; case 2: sdr = SDR0_READ(DCRN_SDR0_UART2); break; case 3: sdr = SDR0_READ(DCRN_SDR0_UART3); break; default: return; } if (sdr & 0x00800000u) clock = ser_clk; else clock = plb_clk / __fix_zero(sdr & 0xff, 256); dt_fixup_clock(path, clock); } void ibm440ep_fixup_clocks(unsigned int sys_clk, unsigned int ser_clk, unsigned int tmr_clk) { unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 0); /* serial clocks beed fixup based on int/ext */ eplike_fixup_uart_clk(0, "/plb/opb/serial@ef600300", ser_clk, plb_clk); eplike_fixup_uart_clk(1, "/plb/opb/serial@ef600400", ser_clk, plb_clk); eplike_fixup_uart_clk(2, "/plb/opb/serial@ef600500", ser_clk, plb_clk); eplike_fixup_uart_clk(3, "/plb/opb/serial@ef600600", ser_clk, plb_clk); } void ibm440gx_fixup_clocks(unsigned int sys_clk, unsigned int ser_clk, unsigned int tmr_clk) { unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 1); /* serial clocks beed fixup based on int/ext */ eplike_fixup_uart_clk(0, "/plb/opb/serial@40000200", ser_clk, plb_clk); eplike_fixup_uart_clk(1, "/plb/opb/serial@40000300", ser_clk, plb_clk); } void ibm440spe_fixup_clocks(unsigned int sys_clk, unsigned int ser_clk, unsigned int tmr_clk) { unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 1); /* serial clocks beed fixup based on int/ext */ eplike_fixup_uart_clk(0, "/plb/opb/serial@10000200", ser_clk, plb_clk); eplike_fixup_uart_clk(1, "/plb/opb/serial@10000300", ser_clk, plb_clk); eplike_fixup_uart_clk(2, "/plb/opb/serial@10000600", ser_clk, plb_clk); } void ibm405gp_fixup_clocks(unsigned int sys_clk, unsigned int ser_clk) { u32 pllmr = mfdcr(DCRN_CPC0_PLLMR); u32 cpc0_cr0 = mfdcr(DCRN_405_CPC0_CR0); u32 cpc0_cr1 = mfdcr(DCRN_405_CPC0_CR1); u32 psr = mfdcr(DCRN_405_CPC0_PSR); u32 cpu, plb, opb, ebc, tb, uart0, uart1, m; u32 fwdv, fwdvb, fbdv, cbdv, opdv, epdv, ppdv, udiv; fwdv = (8 - ((pllmr & 0xe0000000) >> 29)); fbdv = (pllmr & 0x1e000000) >> 25; if (fbdv == 0) fbdv = 16; cbdv = ((pllmr & 0x00060000) >> 17) + 1; /* CPU:PLB */ opdv = ((pllmr & 0x00018000) >> 15) + 1; /* PLB:OPB */ ppdv = ((pllmr & 0x00001800) >> 13) + 1; /* PLB:PCI */ epdv = ((pllmr & 0x00001800) >> 11) + 2; /* PLB:EBC */ udiv = ((cpc0_cr0 & 0x3e) >> 1) + 1; /* check for 405GPr */ if ((mfpvr() & 0xfffffff0) == (0x50910951 & 0xfffffff0)) { fwdvb = 8 - (pllmr & 0x00000007); if (!(psr & 0x00001000)) /* PCI async mode enable == 0 */ if (psr & 0x00000020) /* New mode enable */ m = fwdvb * 2 * ppdv; else m = fwdvb * cbdv * ppdv; else if (psr & 0x00000020) /* New mode enable */ if (psr & 0x00000800) /* PerClk synch mode */ m = fwdvb * 2 * epdv; else m = fbdv * fwdv; else if (epdv == fbdv) m = fbdv * cbdv * epdv; else m = fbdv * fwdvb * cbdv; cpu = sys_clk * m / fwdv; plb = sys_clk * m / (fwdvb * cbdv); } else { m = fwdv * fbdv * cbdv; cpu = sys_clk * m / fwdv; plb = cpu / cbdv; } opb = plb / opdv; ebc = plb / epdv; if (cpc0_cr0 & 0x80) /* uart0 uses the external clock */ uart0 = ser_clk; else uart0 = cpu / udiv; if (cpc0_cr0 & 0x40) /* uart1 uses the external clock */ uart1 = ser_clk; else uart1 = cpu / udiv; /* setup the timebase clock to tick at the cpu frequency */ cpc0_cr1 = cpc0_cr1 & ~0x00800000; mtdcr(DCRN_405_CPC0_CR1, cpc0_cr1); tb = cpu; dt_fixup_cpu_clocks(cpu, tb, 0); dt_fixup_clock("/plb", plb); dt_fixup_clock("/plb/opb", opb); dt_fixup_clock("/plb/ebc", ebc); dt_fixup_clock("/plb/opb/serial@ef600300", uart0); dt_fixup_clock("/plb/opb/serial@ef600400", uart1); } void ibm405ep_fixup_clocks(unsigned int sys_clk) { u32 pllmr0 = mfdcr(DCRN_CPC0_PLLMR0); u32 pllmr1 = mfdcr(DCRN_CPC0_PLLMR1); u32 cpc0_ucr = mfdcr(DCRN_CPC0_UCR); u32 cpu, plb, opb, ebc, uart0, uart1; u32 fwdva, fwdvb, fbdv, cbdv, opdv, epdv; u32 pllmr0_ccdv, tb, m; fwdva = 8 - ((pllmr1 & 0x00070000) >> 16); fwdvb = 8 - ((pllmr1 & 0x00007000) >> 12); fbdv = (pllmr1 & 0x00f00000) >> 20; if (fbdv == 0) fbdv = 16; cbdv = ((pllmr0 & 0x00030000) >> 16) + 1; /* CPU:PLB */ epdv = ((pllmr0 & 0x00000300) >> 8) + 2; /* PLB:EBC */ opdv = ((pllmr0 & 0x00003000) >> 12) + 1; /* PLB:OPB */ m = fbdv * fwdvb; pllmr0_ccdv = ((pllmr0 & 0x00300000) >> 20) + 1; if (pllmr1 & 0x80000000) cpu = sys_clk * m / (fwdva * pllmr0_ccdv); else cpu = sys_clk / pllmr0_ccdv; plb = cpu / cbdv; opb = plb / opdv; ebc = plb / epdv; tb = cpu; uart0 = cpu / (cpc0_ucr & 0x0000007f); uart1 = cpu / ((cpc0_ucr & 0x00007f00) >> 8); dt_fixup_cpu_clocks(cpu, tb, 0); dt_fixup_clock("/plb", plb); dt_fixup_clock("/plb/opb", opb); dt_fixup_clock("/plb/ebc", ebc); dt_fixup_clock("/plb/opb/serial@ef600300", uart0); dt_fixup_clock("/plb/opb/serial@ef600400", uart1); }