/* MN10300 Exception handling * * Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Modified by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public Licence * as published by the Free Software Foundation; either version * 2 of the Licence, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if (CONFIG_INTERRUPT_VECTOR_BASE & 0xffffff) #error "INTERRUPT_VECTOR_BASE not aligned to 16MiB boundary!" #endif struct pt_regs *__frame; /* current frame pointer */ EXPORT_SYMBOL(__frame); int kstack_depth_to_print = 24; spinlock_t die_lock = __SPIN_LOCK_UNLOCKED(die_lock); ATOMIC_NOTIFIER_HEAD(mn10300_die_chain); /* * These constants are for searching for possible module text * segments. MODULE_RANGE is a guess of how much space is likely * to be vmalloced. */ #define MODULE_RANGE (8 * 1024 * 1024) #define DO_ERROR(signr, prologue, str, name) \ asmlinkage void name(struct pt_regs *regs, u32 intcode) \ { \ prologue; \ if (die_if_no_fixup(str, regs, intcode)) \ return; \ force_sig(signr, current); \ } #define DO_EINFO(signr, prologue, str, name, sicode) \ asmlinkage void name(struct pt_regs *regs, u32 intcode) \ { \ siginfo_t info; \ prologue; \ if (die_if_no_fixup(str, regs, intcode)) \ return; \ info.si_signo = signr; \ if (signr == SIGILL && sicode == ILL_ILLOPC) { \ uint8_t opcode; \ if (get_user(opcode, (uint8_t __user *)regs->pc) == 0) \ if (opcode == 0xff) \ info.si_signo = SIGTRAP; \ } \ info.si_errno = 0; \ info.si_code = sicode; \ info.si_addr = (void *) regs->pc; \ force_sig_info(info.si_signo, &info, current); \ } DO_ERROR(SIGTRAP, {}, "trap", trap); DO_ERROR(SIGSEGV, {}, "ibreak", ibreak); DO_ERROR(SIGSEGV, {}, "obreak", obreak); DO_EINFO(SIGSEGV, {}, "access error", access_error, SEGV_ACCERR); DO_EINFO(SIGSEGV, {}, "insn access error", insn_acc_error, SEGV_ACCERR); DO_EINFO(SIGSEGV, {}, "data access error", data_acc_error, SEGV_ACCERR); DO_EINFO(SIGILL, {}, "privileged opcode", priv_op, ILL_PRVOPC); DO_EINFO(SIGILL, {}, "invalid opcode", invalid_op, ILL_ILLOPC); DO_EINFO(SIGILL, {}, "invalid ex opcode", invalid_exop, ILL_ILLOPC); DO_EINFO(SIGBUS, {}, "invalid address", mem_error, BUS_ADRERR); DO_EINFO(SIGBUS, {}, "bus error", bus_error, BUS_ADRERR); DO_EINFO(SIGILL, {}, "FPU invalid opcode", fpu_invalid_op, ILL_COPROC); DO_ERROR(SIGTRAP, #ifndef CONFIG_MN10300_USING_JTAG DCR &= ~0x0001, #else {}, #endif "single step", istep); /* * handle NMI */ asmlinkage void nmi(struct pt_regs *regs, enum exception_code code) { /* see if gdbstub wants to deal with it */ #ifdef CONFIG_GDBSTUB if (gdbstub_intercept(regs, code)) return; #endif printk(KERN_WARNING "--- Register Dump ---\n"); show_registers(regs); printk(KERN_WARNING "---------------------\n"); } /* * show a stack trace from the specified stack pointer */ void show_trace(unsigned long *sp) { unsigned long *stack, addr, module_start, module_end; int i; printk(KERN_EMERG "\n" KERN_EMERG "Call Trace:"); stack = sp; i = 0; module_start = VMALLOC_START; module_end = VMALLOC_END; while (((long) stack & (THREAD_SIZE - 1)) != 0) { addr = *stack++; if (__kernel_text_address(addr)) { #if 1 printk(" [<%08lx>]", addr); print_symbol(" %s", addr); printk("\n"); #else if ((i % 6) == 0) printk("\n" KERN_EMERG " "); printk("[<%08lx>] ", addr); i++; #endif } } printk("\n"); } /* * show the raw stack from the specified stack pointer */ void show_stack(struct task_struct *task, unsigned long *sp) { unsigned long *stack; int i; if (!sp) sp = (unsigned long *) &sp; stack = sp; printk(KERN_EMERG "Stack:"); for (i = 0; i < kstack_depth_to_print; i++) { if (((long) stack & (THREAD_SIZE - 1)) == 0) break; if ((i % 8) == 0) printk("\n" KERN_EMERG " "); printk("%08lx ", *stack++); } show_trace(sp); } /* * the architecture-independent dump_stack generator */ void dump_stack(void) { unsigned long stack; show_stack(current, &stack); } EXPORT_SYMBOL(dump_stack); /* * dump the register file in the specified exception frame */ void show_registers_only(struct pt_regs *regs) { unsigned long ssp; ssp = (unsigned long) regs + sizeof(*regs); printk(KERN_EMERG "PC: %08lx EPSW: %08lx SSP: %08lx mode: %s\n", regs->pc, regs->epsw, ssp, user_mode(regs) ? "User" : "Super"); printk(KERN_EMERG "d0: %08lx d1: %08lx d2: %08lx d3: %08lx\n", regs->d0, regs->d1, regs->d2, regs->d3); printk(KERN_EMERG "a0: %08lx a1: %08lx a2: %08lx a3: %08lx\n", regs->a0, regs->a1, regs->a2, regs->a3); printk(KERN_EMERG "e0: %08lx e1: %08lx e2: %08lx e3: %08lx\n", regs->e0, regs->e1, regs->e2, regs->e3); printk(KERN_EMERG "e4: %08lx e5: %08lx e6: %08lx e7: %08lx\n", regs->e4, regs->e5, regs->e6, regs->e7); printk(KERN_EMERG "lar: %08lx lir: %08lx mdr: %08lx usp: %08lx\n", regs->lar, regs->lir, regs->mdr, regs->sp); printk(KERN_EMERG "cvf: %08lx crl: %08lx crh: %08lx drq: %08lx\n", regs->mcvf, regs->mcrl, regs->mcrh, regs->mdrq); printk(KERN_EMERG "threadinfo=%p task=%p)\n", current_thread_info(), current); if ((unsigned long) current >= 0x90000000UL && (unsigned long) current < 0x94000000UL) printk(KERN_EMERG "Process %s (pid: %d)\n", current->comm, current->pid); printk(KERN_EMERG "CPUP: %04hx\n", CPUP); printk(KERN_EMERG "TBR: %08x\n", TBR); printk(KERN_EMERG "DEAR: %08x\n", DEAR); printk(KERN_EMERG "sISR: %08x\n", sISR); printk(KERN_EMERG "NMICR: %04hx\n", NMICR); printk(KERN_EMERG "BCBERR: %08x\n", BCBERR); printk(KERN_EMERG "BCBEAR: %08x\n", BCBEAR); printk(KERN_EMERG "MMUFCR: %08x\n", MMUFCR); printk(KERN_EMERG "IPTEU : %08x IPTEL2: %08x\n", IPTEU, IPTEL2); printk(KERN_EMERG "DPTEU: %08x DPTEL2: %08x\n", DPTEU, DPTEL2); } /* * dump the registers and the stack */ void show_registers(struct pt_regs *regs) { unsigned long sp; int i; show_registers_only(regs); if (!user_mode(regs)) sp = (unsigned long) regs + sizeof(*regs); else sp = regs->sp; /* when in-kernel, we also print out the stack and code at the * time of the fault.. */ if (!user_mode(regs)) { printk(KERN_EMERG "\n"); show_stack(current, (unsigned long *) sp); #if 0 printk(KERN_EMERG "\n" KERN_EMERG "Code: "); if (regs->pc < PAGE_OFFSET) goto bad; for (i = 0; i < 20; i++) { unsigned char c; if (__get_user(c, &((unsigned char *) regs->pc)[i])) goto bad; printk("%02x ", c); } #else i = 0; #endif } printk("\n"); return; #if 0 bad: printk(KERN_EMERG " Bad PC value."); break; #endif } /* * */ void show_trace_task(struct task_struct *tsk) { unsigned long sp = tsk->thread.sp; /* User space on another CPU? */ if ((sp ^ (unsigned long) tsk) & (PAGE_MASK << 1)) return; show_trace((unsigned long *) sp); } /* * note the untimely death of part of the kernel */ void die(const char *str, struct pt_regs *regs, enum exception_code code) { console_verbose(); spin_lock_irq(&die_lock); printk(KERN_EMERG "\n" KERN_EMERG "%s: %04x\n", str, code & 0xffff); show_registers(regs); if (regs->pc >= 0x02000000 && regs->pc < 0x04000000 && (regs->epsw & (EPSW_IM | EPSW_IE)) != (EPSW_IM | EPSW_IE)) { printk(KERN_EMERG "Exception in usermode interrupt handler\n"); printk(KERN_EMERG "\n" KERN_EMERG " Please connect to kernel debugger !!\n"); asm volatile ("0: bra 0b"); } spin_unlock_irq(&die_lock); do_exit(SIGSEGV); } /* * see if there's a fixup handler we can force a jump to when an exception * happens due to something kernel code did */ int die_if_no_fixup(const char *str, struct pt_regs *regs, enum exception_code code) { if (user_mode(regs)) return 0; peripheral_leds_display_exception(code); switch (code) { /* see if we can fixup the kernel accessing memory */ case EXCEP_ITLBMISS: case EXCEP_DTLBMISS: case EXCEP_IAERROR: case EXCEP_DAERROR: case EXCEP_MEMERR: case EXCEP_MISALIGN: case EXCEP_BUSERROR: case EXCEP_ILLDATACC: case EXCEP_IOINSACC: case EXCEP_PRIVINSACC: case EXCEP_PRIVDATACC: case EXCEP_DATINSACC: if (fixup_exception(regs)) return 1; case EXCEP_UNIMPINS: if (regs->pc && *(uint8_t *)regs->pc == 0xff) if (notify_die(DIE_BREAKPOINT, str, regs, code, 0, 0)) return 1; break; default: break; } /* see if gdbstub wants to deal with it */ #ifdef CONFIG_GDBSTUB if (gdbstub_intercept(regs, code)) return 1; #endif if (notify_die(DIE_GPF, str, regs, code, 0, 0)) return 1; /* make the process die as the last resort */ die(str, regs, code); } /* * handle unsupported syscall instructions (syscall 1-15) */ static asmlinkage void unsupported_syscall(struct pt_regs *regs, enum exception_code code) { struct task_struct *tsk = current; siginfo_t info; /* catch a kernel BUG() */ if (code == EXCEP_SYSCALL15 && !user_mode(regs)) { if (report_bug(regs->pc, regs) == BUG_TRAP_TYPE_BUG) { #ifdef CONFIG_GDBSTUB gdbstub_intercept(regs, code); #endif } } regs->pc -= 2; /* syscall return addr is _after_ the instruction */ die_if_no_fixup("An unsupported syscall insn was used by the kernel\n", regs, code); info.si_signo = SIGILL; info.si_errno = ENOSYS; info.si_code = ILL_ILLTRP; info.si_addr = (void *) regs->pc; force_sig_info(SIGILL, &info, tsk); } /* * display the register file when the stack pointer gets clobbered */ asmlinkage void do_double_fault(struct pt_regs *regs) { struct task_struct *tsk = current; strcpy(tsk->comm, "emergency tsk"); tsk->pid = 0; console_verbose(); printk(KERN_EMERG "--- double fault ---\n"); show_registers(regs); } /* * asynchronous bus error (external, usually I/O DMA) */ asmlinkage void io_bus_error(u32 bcberr, u32 bcbear, struct pt_regs *regs) { console_verbose(); printk(KERN_EMERG "\n" KERN_EMERG "Asynchronous I/O Bus Error\n" KERN_EMERG "==========================\n"); if (bcberr & BCBERR_BEME) printk(KERN_EMERG "- Multiple recorded errors\n"); printk(KERN_EMERG "- Faulting Buses:%s%s%s\n", bcberr & BCBERR_BEMR_CI ? " CPU-Ins-Fetch" : "", bcberr & BCBERR_BEMR_CD ? " CPU-Data" : "", bcberr & BCBERR_BEMR_DMA ? " DMA" : ""); printk(KERN_EMERG "- %s %s access made to %s at address %08x\n", bcberr & BCBERR_BEBST ? "Burst" : "Single", bcberr & BCBERR_BERW ? "Read" : "Write", bcberr & BCBERR_BESB_MON ? "Monitor Space" : bcberr & BCBERR_BESB_IO ? "Internal CPU I/O Space" : bcberr & BCBERR_BESB_EX ? "External I/O Bus" : bcberr & BCBERR_BESB_OPEX ? "External Memory Bus" : "On Chip Memory", bcbear ); printk(KERN_EMERG "- Detected by the %s\n", bcberr&BCBERR_BESD ? "Bus Control Unit" : "Slave Bus"); #ifdef CONFIG_PCI #define BRIDGEREGB(X) (*(volatile __u8 *)(0xBE040000 + (X))) #define BRIDGEREGW(X) (*(volatile __u16 *)(0xBE040000 + (X))) #define BRIDGEREGL(X) (*(volatile __u32 *)(0xBE040000 + (X))) printk(KERN_EMERG "- PCI Memory Paging Reg: %08x\n", *(volatile __u32 *) (0xBFFFFFF4)); printk(KERN_EMERG "- PCI Bridge Base Address 0: %08x\n", BRIDGEREGL(PCI_BASE_ADDRESS_0)); printk(KERN_EMERG "- PCI Bridge AMPCI Base Address: %08x\n", BRIDGEREGL(0x48)); printk(KERN_EMERG "- PCI Bridge Command: %04hx\n", BRIDGEREGW(PCI_COMMAND)); printk(KERN_EMERG "- PCI Bridge Status: %04hx\n", BRIDGEREGW(PCI_STATUS)); printk(KERN_EMERG "- PCI Bridge Int Status: %08hx\n", BRIDGEREGL(0x4c)); #endif printk(KERN_EMERG "\n"); show_registers(regs); panic("Halted due to asynchronous I/O Bus Error\n"); } /* * handle an exception for which a handler has not yet been installed */ asmlinkage void uninitialised_exception(struct pt_regs *regs, enum exception_code code) { /* see if gdbstub wants to deal with it */ #ifdef CONFIG_GDBSTUB if (gdbstub_intercept(regs, code)) return; #endif peripheral_leds_display_exception(code); printk(KERN_EMERG "Uninitialised Exception 0x%04x\n", code & 0xFFFF); show_registers(regs); for (;;) continue; } /* * set an interrupt stub to jump to a handler * ! NOTE: this does *not* flush the caches */ void __init __set_intr_stub(enum exception_code code, void *handler) { unsigned long addr; u8 *vector = (u8 *)(CONFIG_INTERRUPT_VECTOR_BASE + code); addr = (unsigned long) handler - (unsigned long) vector; vector[0] = 0xdc; /* JMP handler */ vector[1] = addr; vector[2] = addr >> 8; vector[3] = addr >> 16; vector[4] = addr >> 24; vector[5] = 0xcb; vector[6] = 0xcb; vector[7] = 0xcb; } /* * set an interrupt stub to jump to a handler */ void __init set_intr_stub(enum exception_code code, void *handler) { unsigned long addr; u8 *vector = (u8 *)(CONFIG_INTERRUPT_VECTOR_BASE + code); addr = (unsigned long) handler - (unsigned long) vector; vector[0] = 0xdc; /* JMP handler */ vector[1] = addr; vector[2] = addr >> 8; vector[3] = addr >> 16; vector[4] = addr >> 24; vector[5] = 0xcb; vector[6] = 0xcb; vector[7] = 0xcb; mn10300_dcache_flush_inv(); mn10300_icache_inv(); } /* * set an interrupt stub to invoke the JTAG unit and then jump to a handler */ void __init set_jtag_stub(enum exception_code code, void *handler) { unsigned long addr; u8 *vector = (u8 *)(CONFIG_INTERRUPT_VECTOR_BASE + code); addr = (unsigned long) handler - ((unsigned long) vector + 1); vector[0] = 0xff; /* PI to jump into JTAG debugger */ vector[1] = 0xdc; /* jmp handler */ vector[2] = addr; vector[3] = addr >> 8; vector[4] = addr >> 16; vector[5] = addr >> 24; vector[6] = 0xcb; vector[7] = 0xcb; mn10300_dcache_flush_inv(); flush_icache_range((unsigned long) vector, (unsigned long) vector + 8); } /* * initialise the exception table */ void __init trap_init(void) { set_excp_vector(EXCEP_TRAP, trap); set_excp_vector(EXCEP_ISTEP, istep); set_excp_vector(EXCEP_IBREAK, ibreak); set_excp_vector(EXCEP_OBREAK, obreak); set_excp_vector(EXCEP_PRIVINS, priv_op); set_excp_vector(EXCEP_UNIMPINS, invalid_op); set_excp_vector(EXCEP_UNIMPEXINS, invalid_exop); set_excp_vector(EXCEP_MEMERR, mem_error); set_excp_vector(EXCEP_MISALIGN, misalignment); set_excp_vector(EXCEP_BUSERROR, bus_error); set_excp_vector(EXCEP_ILLINSACC, insn_acc_error); set_excp_vector(EXCEP_ILLDATACC, data_acc_error); set_excp_vector(EXCEP_IOINSACC, insn_acc_error); set_excp_vector(EXCEP_PRIVINSACC, insn_acc_error); set_excp_vector(EXCEP_PRIVDATACC, data_acc_error); set_excp_vector(EXCEP_DATINSACC, insn_acc_error); set_excp_vector(EXCEP_FPU_DISABLED, fpu_disabled); set_excp_vector(EXCEP_FPU_UNIMPINS, fpu_invalid_op); set_excp_vector(EXCEP_FPU_OPERATION, fpu_exception); set_excp_vector(EXCEP_NMI, nmi); set_excp_vector(EXCEP_SYSCALL1, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL2, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL3, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL4, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL5, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL6, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL7, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL8, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL9, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL10, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL11, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL12, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL13, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL14, unsupported_syscall); set_excp_vector(EXCEP_SYSCALL15, unsupported_syscall); } /* * determine if a program counter value is a valid bug address */ int is_valid_bugaddr(unsigned long pc) { return pc >= PAGE_OFFSET; }