/* * Copyright (c) 2014-2018 Remy Noel. * Copyright (c) 2014-2018 Richard Braun. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * * Locking order : * * thread_runq -+ * | * event -+-> interrupts -+-> td * | * +-> pmu * * TODO Kernel/user mode seggregation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Minimum hardware counter poll interval, in milliseconds. * * The main purpose of polling hardware counters is to detect overflows * when the driver is unable to reliably use overflow interrupts. */ #define PERFMON_MIN_POLL_INTERVAL 50 /* * Internal event flags. */ #define PERFMON_EF_TYPE_CPU 0x100 #define PERFMON_EF_ATTACHED 0x200 #define PERFMON_EF_PUBLIC_MASK (PERFMON_EF_KERN \ | PERFMON_EF_USER \ | PERFMON_EF_RAW) /* * Per-CPU performance monitoring counter. * * When an event is attached to a processor, the matching per-CPU PMC get * referenced. When a per-CPU PMC is referenced, its underlying hardware * counter is active. * * Interrupts and preemption must be disabled on access. */ struct perfmon_cpu_pmc { unsigned int nr_refs; unsigned int pmc_id; unsigned int raw_event_id; uint64_t raw_value; uint64_t value; }; /* * Per-CPU performance monitoring unit. * * Per-CPU PMCs are indexed the same way as global PMCs. * * Interrupts and preemption must be disabled on access. */ struct perfmon_cpu_pmu { struct perfmon_dev *dev; unsigned int cpu; struct perfmon_cpu_pmc pmcs[PERFMON_MAX_PMCS]; struct timer poll_timer; struct syscnt sc_nr_overflows; }; /* * Performance monitoring counter. * * When a PMC is used, it maps a raw event to a hardware counter. * A PMC is used if and only if its reference counter isn't zero. */ struct perfmon_pmc { unsigned int nr_refs; unsigned int pmc_id; unsigned int raw_event_id; }; /* * Performance monitoring unit. * * There is a single system-wide logical PMU, used to globally allocate * PMCs. Reserving a counter across the entire system ensures thread * migration isn't hindered by performance monitoring. * * Locking the global PMU is only required when allocating or releasing * a PMC. Once allocated, the PMC may safely be accessed without hodling * the lock. */ struct perfmon_pmu { struct perfmon_dev *dev; struct spinlock lock; struct perfmon_pmc pmcs[PERFMON_MAX_PMCS]; }; static struct perfmon_pmu perfmon_pmu; static struct perfmon_cpu_pmu perfmon_cpu_pmu __percpu; static struct perfmon_pmu * perfmon_get_pmu(void) { return &perfmon_pmu; } static struct perfmon_cpu_pmu * perfmon_get_local_cpu_pmu(void) { assert(!thread_preempt_enabled()); return cpu_local_ptr(perfmon_cpu_pmu); } static struct perfmon_cpu_pmu * perfmon_get_cpu_pmu(unsigned int cpu) { return percpu_ptr(perfmon_cpu_pmu, cpu); } static void __init perfmon_pmc_init(struct perfmon_pmc *pmc) { pmc->nr_refs = 0; } static bool perfmon_pmc_used(const struct perfmon_pmc *pmc) { return pmc->nr_refs != 0; } static unsigned int perfmon_pmc_id(const struct perfmon_pmc *pmc) { return pmc->pmc_id; } static unsigned int perfmon_pmc_raw_event_id(const struct perfmon_pmc *pmc) { return pmc->raw_event_id; } static void perfmon_pmc_use(struct perfmon_pmc *pmc, unsigned int pmc_id, unsigned int raw_event_id) { assert(!perfmon_pmc_used(pmc)); pmc->nr_refs = 1; pmc->pmc_id = pmc_id; pmc->raw_event_id = raw_event_id; } static void perfmon_pmc_ref(struct perfmon_pmc *pmc) { assert(perfmon_pmc_used(pmc)); pmc->nr_refs++; } static void perfmon_pmc_unref(struct perfmon_pmc *pmc) { assert(perfmon_pmc_used(pmc)); pmc->nr_refs--; } static unsigned int perfmon_pmu_get_pmc_index(const struct perfmon_pmu *pmu, const struct perfmon_pmc *pmc) { size_t pmc_index; pmc_index = pmc - pmu->pmcs; assert(pmc_index < ARRAY_SIZE(pmu->pmcs)); return pmc_index; } static struct perfmon_pmc * perfmon_pmu_get_pmc(struct perfmon_pmu *pmu, unsigned int index) { assert(index < ARRAY_SIZE(pmu->pmcs)); return &pmu->pmcs[index]; } static void __init perfmon_pmu_init(struct perfmon_pmu *pmu) { pmu->dev = NULL; spinlock_init(&pmu->lock); for (unsigned int i = 0; i < ARRAY_SIZE(pmu->pmcs); i++) { perfmon_pmc_init(perfmon_pmu_get_pmc(pmu, i)); } } static void __init perfmon_pmu_set_dev(struct perfmon_pmu *pmu, struct perfmon_dev *dev) { assert(dev); assert(!pmu->dev); pmu->dev = dev; } static struct perfmon_dev * perfmon_pmu_get_dev(const struct perfmon_pmu *pmu) { return pmu->dev; } static void perfmon_pmu_handle_overflow_intr(const struct perfmon_pmu *pmu) { pmu->dev->ops->handle_overflow_intr(); } static int perfmon_pmu_translate(const struct perfmon_pmu *pmu, unsigned int *raw_event_id, unsigned int event_id) { if (!pmu->dev) { return ENODEV; } return pmu->dev->ops->translate(raw_event_id, event_id); } static int perfmon_pmu_alloc_pmc_id(const struct perfmon_pmu *pmu, unsigned int *pmc_idp, unsigned int pmc_index, unsigned int raw_event_id) { unsigned int pmc_id; int error; if (!pmu->dev) { return ENODEV; } error = pmu->dev->ops->alloc(&pmc_id, pmc_index, raw_event_id); if (error) { return error; } *pmc_idp = pmc_id; return 0; } static void perfmon_pmu_free_pmc_id(const struct perfmon_pmu *pmu, unsigned int pmc_id) { assert(pmu->dev); pmu->dev->ops->free(pmc_id); } static struct perfmon_pmc * perfmon_pmu_find_unused_pmc(struct perfmon_pmu *pmu) { struct perfmon_pmc *pmc; for (unsigned int i = 0; i < ARRAY_SIZE(pmu->pmcs); i++) { pmc = perfmon_pmu_get_pmc(pmu, i); if (!perfmon_pmc_used(pmc)) { return pmc; } } return NULL; } static int perfmon_pmu_alloc_pmc(struct perfmon_pmu *pmu, struct perfmon_pmc **pmcp, unsigned int raw_event_id) { unsigned int pmc_id = 0, pmc_index; struct perfmon_pmc *pmc; int error; pmc = perfmon_pmu_find_unused_pmc(pmu); if (!pmc) { return EAGAIN; } pmc_index = perfmon_pmu_get_pmc_index(pmu, pmc); error = perfmon_pmu_alloc_pmc_id(pmu, &pmc_id, pmc_index, raw_event_id); if (error) { return error; } perfmon_pmc_use(pmc, pmc_id, raw_event_id); *pmcp = pmc; return 0; } static void perfmon_pmu_free_pmc(struct perfmon_pmu *pmu, struct perfmon_pmc *pmc) { unsigned int pmc_id; assert(!perfmon_pmc_used(pmc)); pmc_id = perfmon_pmc_id(pmc); perfmon_pmu_free_pmc_id(pmu, pmc_id); } static struct perfmon_pmc * perfmon_pmu_get_pmc_by_raw_event_id(struct perfmon_pmu *pmu, unsigned int raw_event_id) { struct perfmon_pmc *pmc; for (unsigned int i = 0; i < ARRAY_SIZE(pmu->pmcs); i++) { pmc = perfmon_pmu_get_pmc(pmu, i); if (!perfmon_pmc_used(pmc)) { continue; } if (perfmon_pmc_raw_event_id(pmc) == raw_event_id) { return pmc; } } return NULL; } static int perfmon_pmu_take_pmc(struct perfmon_pmu *pmu, struct perfmon_pmc **pmcp, unsigned int raw_event_id) { struct perfmon_pmc *pmc; int error; spinlock_lock(&pmu->lock); pmc = perfmon_pmu_get_pmc_by_raw_event_id(pmu, raw_event_id); if (pmc) { perfmon_pmc_ref(pmc); error = 0; } else { error = perfmon_pmu_alloc_pmc(pmu, &pmc, raw_event_id); if (error) { pmc = NULL; } } spinlock_unlock(&pmu->lock); if (error) { return error; } *pmcp = pmc; return 0; } static void perfmon_pmu_put_pmc(struct perfmon_pmu *pmu, struct perfmon_pmc *pmc) { spinlock_lock(&pmu->lock); perfmon_pmc_unref(pmc); if (!perfmon_pmc_used(pmc)) { perfmon_pmu_free_pmc(pmu, pmc); } spinlock_unlock(&pmu->lock); } static int perfmon_check_event_args(unsigned int id, unsigned int flags) { if (!((flags & PERFMON_EF_PUBLIC_MASK) == flags) || !((flags & PERFMON_EF_RAW) || (id < PERFMON_NR_GENERIC_EVENTS)) || !((flags & (PERFMON_EF_KERN | PERFMON_EF_USER)))) { return EINVAL; } return 0; } int perfmon_event_init(struct perfmon_event *event, unsigned int id, unsigned int flags) { int error; error = perfmon_check_event_args(id, flags); if (error) { return error; } spinlock_init(&event->lock); event->flags = flags; event->id = id; event->value = 0; return 0; } static bool perfmon_event_type_cpu(const struct perfmon_event *event) { return event->flags & PERFMON_EF_TYPE_CPU; } static void perfmon_event_set_type_cpu(struct perfmon_event *event) { event->flags |= PERFMON_EF_TYPE_CPU; } static void perfmon_event_clear_type_cpu(struct perfmon_event *event) { event->flags &= ~PERFMON_EF_TYPE_CPU; } static bool perfmon_event_attached(const struct perfmon_event *event) { return event->flags & PERFMON_EF_ATTACHED; } static unsigned int perfmon_event_pmc_index(const struct perfmon_event *event) { assert(perfmon_event_attached(event)); return event->pmc_index; } static void __init perfmon_cpu_pmc_init(struct perfmon_cpu_pmc *cpu_pmc) { cpu_pmc->nr_refs = 0; } static bool perfmon_cpu_pmc_used(const struct perfmon_cpu_pmc *cpu_pmc) { return cpu_pmc->nr_refs != 0; } static void perfmon_cpu_pmc_use(struct perfmon_cpu_pmc *cpu_pmc, unsigned int pmc_id, unsigned int raw_event_id, uint64_t raw_value) { assert(!perfmon_cpu_pmc_used(cpu_pmc)); cpu_pmc->nr_refs = 1; cpu_pmc->pmc_id = pmc_id; cpu_pmc->raw_event_id = raw_event_id; cpu_pmc->raw_value = raw_value; cpu_pmc->value = 0; } static void perfmon_cpu_pmc_ref(struct perfmon_cpu_pmc *cpu_pmc) { assert(perfmon_cpu_pmc_used(cpu_pmc)); cpu_pmc->nr_refs++; } static void perfmon_cpu_pmc_unref(struct perfmon_cpu_pmc *cpu_pmc) { assert(perfmon_cpu_pmc_used(cpu_pmc)); cpu_pmc->nr_refs--; } static unsigned int perfmon_cpu_pmc_id(const struct perfmon_cpu_pmc *cpu_pmc) { return cpu_pmc->pmc_id; } static bool perfmon_cpu_pmc_update(struct perfmon_cpu_pmc *cpu_pmc, uint64_t raw_value, unsigned int pmc_width) { bool overflowed; uint64_t delta; delta = raw_value - cpu_pmc->raw_value; if (pmc_width == 64) { overflowed = false; } else { if (raw_value >= cpu_pmc->raw_value) { overflowed = false; } else { overflowed = true; delta += (uint64_t)1 << pmc_width; } } cpu_pmc->value += delta; cpu_pmc->raw_value = raw_value; return overflowed; } static uint64_t perfmon_cpu_pmc_get_value(const struct perfmon_cpu_pmc *cpu_pmc) { return cpu_pmc->value; } static struct perfmon_cpu_pmc * perfmon_cpu_pmu_get_pmc(struct perfmon_cpu_pmu *cpu_pmu, unsigned int index) { assert(index < ARRAY_SIZE(cpu_pmu->pmcs)); return &cpu_pmu->pmcs[index]; } static void perfmon_cpu_pmu_start(struct perfmon_cpu_pmu *cpu_pmu, unsigned int pmc_id, unsigned int raw_event_id) { cpu_pmu->dev->ops->start(pmc_id, raw_event_id); } static void perfmon_cpu_pmu_stop(struct perfmon_cpu_pmu *cpu_pmu, unsigned int pmc_id) { cpu_pmu->dev->ops->stop(pmc_id); } static uint64_t perfmon_cpu_pmu_read(const struct perfmon_cpu_pmu *cpu_pmu, unsigned int pmc_id) { return cpu_pmu->dev->ops->read(pmc_id); } static void perfmon_cpu_pmu_use_pmc(struct perfmon_cpu_pmu *cpu_pmu, struct perfmon_cpu_pmc *cpu_pmc, unsigned int pmc_id, unsigned int raw_event_id) { uint64_t raw_value; perfmon_cpu_pmu_start(cpu_pmu, pmc_id, raw_event_id); raw_value = perfmon_cpu_pmu_read(cpu_pmu, pmc_id); perfmon_cpu_pmc_use(cpu_pmc, pmc_id, raw_event_id, raw_value); } static void perfmon_cpu_pmu_update_pmc(struct perfmon_cpu_pmu *cpu_pmu, struct perfmon_cpu_pmc *cpu_pmc) { uint64_t raw_value; bool overflowed; raw_value = perfmon_cpu_pmu_read(cpu_pmu, perfmon_cpu_pmc_id(cpu_pmc)); overflowed = perfmon_cpu_pmc_update(cpu_pmc, raw_value, cpu_pmu->dev->pmc_width); if (overflowed) { syscnt_inc(&cpu_pmu->sc_nr_overflows); } } static void perfmon_cpu_pmu_check_overflow(void *arg) { struct perfmon_cpu_pmu *cpu_pmu; struct perfmon_cpu_pmc *cpu_pmc; assert(!cpu_intr_enabled()); cpu_pmu = arg; assert(cpu_pmu->cpu == cpu_id()); for (unsigned int i = 0; i < ARRAY_SIZE(cpu_pmu->pmcs); i++) { cpu_pmc = perfmon_cpu_pmu_get_pmc(cpu_pmu, i); if (!perfmon_cpu_pmc_used(cpu_pmc)) { continue; } perfmon_cpu_pmu_update_pmc(cpu_pmu, cpu_pmc); } } static void perfmon_cpu_pmu_poll(struct timer *timer) { struct perfmon_cpu_pmu *cpu_pmu; cpu_pmu = structof(timer, struct perfmon_cpu_pmu, poll_timer); xcall_call(perfmon_cpu_pmu_check_overflow, cpu_pmu, cpu_pmu->cpu); timer_schedule(timer, timer_get_time(timer) + cpu_pmu->dev->poll_interval); } static void __init perfmon_cpu_pmu_init(struct perfmon_cpu_pmu *cpu_pmu, unsigned int cpu, struct perfmon_dev *dev) { char name[SYSCNT_NAME_SIZE]; cpu_pmu->dev = dev; cpu_pmu->cpu = cpu; for (unsigned int i = 0; i < ARRAY_SIZE(cpu_pmu->pmcs); i++) { perfmon_cpu_pmc_init(perfmon_cpu_pmu_get_pmc(cpu_pmu, i)); } if (dev->ops->handle_overflow_intr == NULL) { assert(dev->poll_interval != 0); /* * XXX Ideally, this would be an interrupt timer instead of a high * priority one, but it can't be because the handler performs * cross-calls to remote processors, which requires that interrupts * be enabled. This is one potential user of CPU-bound timers. */ timer_init(&cpu_pmu->poll_timer, perfmon_cpu_pmu_poll, TIMER_HIGH_PRIO); timer_schedule(&cpu_pmu->poll_timer, dev->poll_interval); } snprintf(name, sizeof(name), "perfmon_nr_overflows/%u", cpu); syscnt_register(&cpu_pmu->sc_nr_overflows, name); } static uint64_t perfmon_cpu_pmu_load(struct perfmon_cpu_pmu *cpu_pmu, unsigned int pmc_index, unsigned int pmc_id, unsigned int raw_event_id) { struct perfmon_cpu_pmc *cpu_pmc; assert(!cpu_intr_enabled()); cpu_pmc = perfmon_cpu_pmu_get_pmc(cpu_pmu, pmc_index); if (perfmon_cpu_pmc_used(cpu_pmc)) { perfmon_cpu_pmc_ref(cpu_pmc); perfmon_cpu_pmu_update_pmc(cpu_pmu, cpu_pmc); } else { perfmon_cpu_pmu_use_pmc(cpu_pmu, cpu_pmc, pmc_id, raw_event_id); } return perfmon_cpu_pmc_get_value(cpu_pmc); } static uint64_t perfmon_cpu_pmu_unload(struct perfmon_cpu_pmu *cpu_pmu, unsigned int pmc_index) { struct perfmon_cpu_pmc *cpu_pmc; unsigned int pmc_id; uint64_t value; assert(!cpu_intr_enabled()); cpu_pmc = perfmon_cpu_pmu_get_pmc(cpu_pmu, pmc_index); pmc_id = perfmon_cpu_pmc_id(cpu_pmc); perfmon_cpu_pmu_update_pmc(cpu_pmu, cpu_pmc); value = perfmon_cpu_pmc_get_value(cpu_pmc); perfmon_cpu_pmc_unref(cpu_pmc); if (!perfmon_cpu_pmc_used(cpu_pmc)) { perfmon_cpu_pmu_stop(cpu_pmu, pmc_id); } return value; } static uint64_t perfmon_cpu_pmu_sync(struct perfmon_cpu_pmu *cpu_pmu, unsigned int pmc_index) { struct perfmon_cpu_pmc *cpu_pmc; assert(!cpu_intr_enabled()); cpu_pmc = perfmon_cpu_pmu_get_pmc(cpu_pmu, pmc_index); perfmon_cpu_pmu_update_pmc(cpu_pmu, cpu_pmc); return perfmon_cpu_pmc_get_value(cpu_pmc); } static void perfmon_td_pmc_init(struct perfmon_td_pmc *td_pmc) { td_pmc->nr_refs = 0; td_pmc->loaded = false; td_pmc->value = 0; } static bool perfmon_td_pmc_used(const struct perfmon_td_pmc *td_pmc) { return td_pmc->nr_refs != 0; } static void perfmon_td_pmc_use(struct perfmon_td_pmc *td_pmc, unsigned int pmc_id, unsigned int raw_event_id) { assert(!perfmon_td_pmc_used(td_pmc)); td_pmc->nr_refs = 1; td_pmc->loaded = false; td_pmc->pmc_id = pmc_id; td_pmc->raw_event_id = raw_event_id; td_pmc->value = 0; } static unsigned int perfmon_td_pmc_id(const struct perfmon_td_pmc *td_pmc) { return td_pmc->pmc_id; } static unsigned int perfmon_td_pmc_raw_event_id(const struct perfmon_td_pmc *td_pmc) { return td_pmc->raw_event_id; } static void perfmon_td_pmc_ref(struct perfmon_td_pmc *td_pmc) { assert(perfmon_td_pmc_used(td_pmc)); td_pmc->nr_refs++; } static void perfmon_td_pmc_unref(struct perfmon_td_pmc *td_pmc) { assert(perfmon_td_pmc_used(td_pmc)); td_pmc->nr_refs--; } static bool perfmon_td_pmc_loaded(const struct perfmon_td_pmc *td_pmc) { return td_pmc->loaded; } static void perfmon_td_pmc_load(struct perfmon_td_pmc *td_pmc, uint64_t cpu_pmc_value) { assert(!perfmon_td_pmc_loaded(td_pmc)); td_pmc->cpu_pmc_value = cpu_pmc_value; td_pmc->loaded = true; } static void perfmon_td_pmc_update(struct perfmon_td_pmc *td_pmc, uint64_t cpu_pmc_value) { uint64_t delta; assert(perfmon_td_pmc_loaded(td_pmc)); delta = cpu_pmc_value - td_pmc->cpu_pmc_value; td_pmc->cpu_pmc_value = cpu_pmc_value; td_pmc->value += delta; } static void perfmon_td_pmc_unload(struct perfmon_td_pmc *td_pmc, uint64_t cpu_pmc_value) { perfmon_td_pmc_update(td_pmc, cpu_pmc_value); td_pmc->loaded = false; } static uint64_t perfmon_td_pmc_read(const struct perfmon_td_pmc *td_pmc) { return td_pmc->value; } static unsigned int perfmon_td_get_pmc_index(const struct perfmon_td *td, const struct perfmon_td_pmc *td_pmc) { size_t pmc_index; pmc_index = td_pmc - td->pmcs; assert(pmc_index < ARRAY_SIZE(td->pmcs)); return pmc_index; } static struct perfmon_td_pmc * perfmon_td_get_pmc(struct perfmon_td *td, unsigned int index) { assert(index < ARRAY_SIZE(td->pmcs)); return &td->pmcs[index]; } void perfmon_td_init(struct perfmon_td *td) { spinlock_init(&td->lock); for (unsigned int i = 0; i < ARRAY_SIZE(td->pmcs); i++) { perfmon_td_pmc_init(perfmon_td_get_pmc(td, i)); } } static void perfmon_td_load_pmc(struct perfmon_td *td, struct perfmon_td_pmc *td_pmc) { unsigned int pmc_index, pmc_id, raw_event_id; struct perfmon_cpu_pmu *cpu_pmu; uint64_t cpu_pmc_value; cpu_pmu = perfmon_get_local_cpu_pmu(); pmc_index = perfmon_td_get_pmc_index(td, td_pmc); pmc_id = perfmon_td_pmc_id(td_pmc); raw_event_id = perfmon_td_pmc_raw_event_id(td_pmc); cpu_pmc_value = perfmon_cpu_pmu_load(cpu_pmu, pmc_index, pmc_id, raw_event_id); perfmon_td_pmc_load(td_pmc, cpu_pmc_value); } static void perfmon_td_unload_pmc(struct perfmon_td *td, struct perfmon_td_pmc *td_pmc) { struct perfmon_cpu_pmu *cpu_pmu; unsigned int pmc_index; uint64_t cpu_pmc_value; cpu_pmu = perfmon_get_local_cpu_pmu(); pmc_index = perfmon_td_get_pmc_index(td, td_pmc); cpu_pmc_value = perfmon_cpu_pmu_unload(cpu_pmu, pmc_index); perfmon_td_pmc_unload(td_pmc, cpu_pmc_value); } static void perfmon_td_update_pmc(struct perfmon_td *td, struct perfmon_td_pmc *td_pmc) { struct perfmon_cpu_pmu *cpu_pmu; unsigned int pmc_index; uint64_t cpu_pmc_value; cpu_pmu = perfmon_get_local_cpu_pmu(); pmc_index = perfmon_td_get_pmc_index(td, td_pmc); cpu_pmc_value = perfmon_cpu_pmu_sync(cpu_pmu, pmc_index); perfmon_td_pmc_update(td_pmc, cpu_pmc_value); } void perfmon_td_load(struct perfmon_td *td) { unsigned int pmc_index, pmc_id, raw_event_id; struct perfmon_cpu_pmu *cpu_pmu; struct perfmon_td_pmc *td_pmc; uint64_t cpu_pmc_value; assert(!cpu_intr_enabled()); assert(!thread_preempt_enabled()); cpu_pmu = perfmon_get_local_cpu_pmu(); spinlock_lock(&td->lock); for (unsigned int i = 0; i < ARRAY_SIZE(td->pmcs); i++) { td_pmc = perfmon_td_get_pmc(td, i); if (!perfmon_td_pmc_used(td_pmc) || perfmon_td_pmc_loaded(td_pmc)) { continue; } pmc_index = perfmon_td_get_pmc_index(td, td_pmc); pmc_id = perfmon_td_pmc_id(td_pmc); raw_event_id = perfmon_td_pmc_raw_event_id(td_pmc); cpu_pmc_value = perfmon_cpu_pmu_load(cpu_pmu, pmc_index, pmc_id, raw_event_id); perfmon_td_pmc_load(td_pmc, cpu_pmc_value); } spinlock_unlock(&td->lock); } void perfmon_td_unload(struct perfmon_td *td) { struct perfmon_cpu_pmu *cpu_pmu; struct perfmon_td_pmc *td_pmc; unsigned int pmc_index; uint64_t cpu_pmc_value; assert(!cpu_intr_enabled()); assert(!thread_preempt_enabled()); cpu_pmu = perfmon_get_local_cpu_pmu(); spinlock_lock(&td->lock); for (unsigned int i = 0; i < ARRAY_SIZE(td->pmcs); i++) { td_pmc = perfmon_td_get_pmc(td, i); if (!perfmon_td_pmc_loaded(td_pmc)) { continue; } pmc_index = perfmon_td_get_pmc_index(td, td_pmc); cpu_pmc_value = perfmon_cpu_pmu_unload(cpu_pmu, pmc_index); perfmon_td_pmc_unload(td_pmc, cpu_pmc_value); } spinlock_unlock(&td->lock); } static void perfmon_event_load(struct perfmon_event *event, uint64_t pmc_value) { event->pmc_value = pmc_value; } static void perfmon_event_update(struct perfmon_event *event, uint64_t pmc_value) { uint64_t delta; delta = pmc_value - event->pmc_value; event->value += delta; event->pmc_value = pmc_value; } static void perfmon_event_load_cpu_remote(void *arg) { struct perfmon_event *event; struct perfmon_cpu_pmu *cpu_pmu; const struct perfmon_pmc *pmc; struct perfmon_pmu *pmu; unsigned int pmc_index; uint64_t cpu_pmc_value; event = arg; cpu_pmu = perfmon_get_local_cpu_pmu(); pmu = perfmon_get_pmu(); pmc_index = perfmon_event_pmc_index(event); pmc = perfmon_pmu_get_pmc(pmu, pmc_index); cpu_pmc_value = perfmon_cpu_pmu_load(cpu_pmu, pmc_index, perfmon_pmc_id(pmc), perfmon_pmc_raw_event_id(pmc)); perfmon_event_load(event, cpu_pmc_value); } static void perfmon_event_load_cpu(struct perfmon_event *event, unsigned int cpu) { perfmon_event_set_type_cpu(event); event->cpu = cpu; xcall_call(perfmon_event_load_cpu_remote, event, cpu); } static void perfmon_event_load_thread_remote(void *arg) { struct perfmon_event *event; struct perfmon_td_pmc *td_pmc; struct perfmon_td *td; unsigned int pmc_index; uint64_t td_pmc_value; event = arg; pmc_index = perfmon_event_pmc_index(event); td = thread_get_perfmon_td(event->thread); td_pmc = perfmon_td_get_pmc(td, pmc_index); spinlock_lock(&td->lock); if (thread_self() == event->thread) { if (perfmon_td_pmc_loaded(td_pmc)) { perfmon_td_update_pmc(td, td_pmc); } else { perfmon_td_load_pmc(td, td_pmc); } } td_pmc_value = perfmon_td_pmc_read(td_pmc); spinlock_unlock(&td->lock); perfmon_event_load(event, td_pmc_value); } static void perfmon_event_load_thread(struct perfmon_event *event, struct thread *thread) { struct perfmon_td_pmc *td_pmc; struct perfmon_td *td; struct perfmon_pmu *pmu; const struct perfmon_pmc *pmc; unsigned int pmc_index; unsigned long flags; pmu = perfmon_get_pmu(); thread_ref(thread); event->thread = thread; pmc_index = perfmon_event_pmc_index(event); pmc = perfmon_pmu_get_pmc(pmu, pmc_index); td = thread_get_perfmon_td(thread); td_pmc = perfmon_td_get_pmc(td, pmc_index); spinlock_lock_intr_save(&td->lock, &flags); if (perfmon_td_pmc_used(td_pmc)) { perfmon_td_pmc_ref(td_pmc); } else { perfmon_td_pmc_use(td_pmc, perfmon_pmc_id(pmc), perfmon_pmc_raw_event_id(pmc)); } spinlock_unlock_intr_restore(&td->lock, flags); xcall_call(perfmon_event_load_thread_remote, event, thread_cpu(thread)); } static void perfmon_event_unload_cpu_remote(void *arg) { struct perfmon_event *event; struct perfmon_cpu_pmu *cpu_pmu; unsigned int pmc_index; uint64_t cpu_pmc_value; event = arg; cpu_pmu = perfmon_get_local_cpu_pmu(); pmc_index = perfmon_event_pmc_index(event); cpu_pmc_value = perfmon_cpu_pmu_unload(cpu_pmu, pmc_index); perfmon_event_update(event, cpu_pmc_value); } static void perfmon_event_unload_cpu(struct perfmon_event *event) { xcall_call(perfmon_event_unload_cpu_remote, event, event->cpu); perfmon_event_clear_type_cpu(event); } static void perfmon_event_unload_thread_remote(void *arg) { struct perfmon_event *event; struct perfmon_td_pmc *td_pmc; struct perfmon_td *td; unsigned int pmc_index; uint64_t td_pmc_value; event = arg; pmc_index = perfmon_event_pmc_index(event); td = thread_get_perfmon_td(event->thread); td_pmc = perfmon_td_get_pmc(td, pmc_index); spinlock_lock(&td->lock); if ((thread_self() == event->thread) && perfmon_td_pmc_loaded(td_pmc)) { if (perfmon_td_pmc_used(td_pmc)) { perfmon_td_update_pmc(td, td_pmc); } else { perfmon_td_unload_pmc(td, td_pmc); } } td_pmc_value = perfmon_td_pmc_read(td_pmc); spinlock_unlock(&td->lock); perfmon_event_update(event, td_pmc_value); } static void perfmon_event_unload_thread(struct perfmon_event *event) { struct perfmon_td_pmc *td_pmc; struct perfmon_td *td; unsigned int pmc_index; unsigned long flags; pmc_index = perfmon_event_pmc_index(event); td = thread_get_perfmon_td(event->thread); td_pmc = perfmon_td_get_pmc(td, pmc_index); spinlock_lock_intr_save(&td->lock, &flags); perfmon_td_pmc_unref(td_pmc); spinlock_unlock_intr_restore(&td->lock, flags); xcall_call(perfmon_event_unload_thread_remote, event, thread_cpu(event->thread)); thread_unref(event->thread); event->thread = NULL; } static void perfmon_event_sync_cpu_remote(void *arg) { struct perfmon_event *event; struct perfmon_cpu_pmu *cpu_pmu; unsigned int pmc_index; uint64_t cpu_pmc_value; event = arg; cpu_pmu = perfmon_get_local_cpu_pmu(); pmc_index = perfmon_event_pmc_index(event); cpu_pmc_value = perfmon_cpu_pmu_sync(cpu_pmu, pmc_index); perfmon_event_update(event, cpu_pmc_value); } static void perfmon_event_sync_cpu(struct perfmon_event *event) { xcall_call(perfmon_event_sync_cpu_remote, event, event->cpu); } static void perfmon_event_sync_thread_remote(void *arg) { struct perfmon_event *event; struct perfmon_td_pmc *td_pmc; struct perfmon_td *td; unsigned int pmc_index; uint64_t td_pmc_value; event = arg; pmc_index = perfmon_event_pmc_index(event); td = thread_get_perfmon_td(event->thread); td_pmc = perfmon_td_get_pmc(td, pmc_index); spinlock_lock(&td->lock); if (thread_self() == event->thread) { perfmon_td_update_pmc(td, td_pmc); } td_pmc_value = perfmon_td_pmc_read(td_pmc); spinlock_unlock(&td->lock); perfmon_event_update(event, td_pmc_value); } static void perfmon_event_sync_thread(struct perfmon_event *event) { xcall_call(perfmon_event_sync_thread_remote, event, thread_cpu(event->thread)); } static int perfmon_event_attach_pmu(struct perfmon_event *event) { unsigned int raw_event_id = 0; struct perfmon_pmu *pmu; struct perfmon_pmc *pmc; int error; pmu = perfmon_get_pmu(); if (!(event->flags & PERFMON_EF_RAW)) { error = perfmon_pmu_translate(pmu, &raw_event_id, event->id); if (error) { return error; } } error = perfmon_pmu_take_pmc(pmu, &pmc, raw_event_id); if (error) { return error; } event->pmc_index = perfmon_pmu_get_pmc_index(pmu, pmc); event->flags |= PERFMON_EF_ATTACHED; event->value = 0; return 0; } static void perfmon_event_detach_pmu(struct perfmon_event *event) { struct perfmon_pmu *pmu; struct perfmon_pmc *pmc; pmu = perfmon_get_pmu(); pmc = perfmon_pmu_get_pmc(pmu, perfmon_event_pmc_index(event)); perfmon_pmu_put_pmc(pmu, pmc); event->flags &= ~PERFMON_EF_ATTACHED; } int perfmon_event_attach(struct perfmon_event *event, struct thread *thread) { int error; spinlock_lock(&event->lock); if (perfmon_event_attached(event)) { error = EINVAL; goto error; } error = perfmon_event_attach_pmu(event); if (error) { goto error; } perfmon_event_load_thread(event, thread); spinlock_unlock(&event->lock); return 0; error: spinlock_unlock(&event->lock); return error; } int perfmon_event_attach_cpu(struct perfmon_event *event, unsigned int cpu) { int error; if (cpu >= cpu_count()) { return EINVAL; } spinlock_lock(&event->lock); if (perfmon_event_attached(event)) { error = EINVAL; goto out; } error = perfmon_event_attach_pmu(event); if (error) { goto out; } perfmon_event_load_cpu(event, cpu); error = 0; out: spinlock_unlock(&event->lock); return error; } int perfmon_event_detach(struct perfmon_event *event) { int error; spinlock_lock(&event->lock); if (!perfmon_event_attached(event)) { error = EINVAL; goto out; } if (perfmon_event_type_cpu(event)) { perfmon_event_unload_cpu(event); } else { perfmon_event_unload_thread(event); } perfmon_event_detach_pmu(event); error = 0; out: spinlock_unlock(&event->lock); return error; } uint64_t perfmon_event_read(struct perfmon_event *event) { uint64_t value; spinlock_lock(&event->lock); if (perfmon_event_attached(event)) { if (perfmon_event_type_cpu(event)) { perfmon_event_sync_cpu(event); } else { perfmon_event_sync_thread(event); } } value = event->value; spinlock_unlock(&event->lock); return value; } static uint64_t __init perfmon_compute_poll_interval(uint64_t pmc_width) { uint64_t cycles, time; if (pmc_width == 64) { cycles = (uint64_t)-1; } else { cycles = (uint64_t)1 << pmc_width; } /* * Assume an unrealistically high upper bound on the number of * events per cycle to otbain a comfortable margin of safety. */ cycles /= 100; time = cycles / (cpu_get_freq() / 1000); if (time < PERFMON_MIN_POLL_INTERVAL) { log_warning("perfmon: invalid poll interval %llu, forced to %llu", (unsigned long long)time, (unsigned long long)PERFMON_MIN_POLL_INTERVAL); time = PERFMON_MIN_POLL_INTERVAL; } return clock_ticks_from_ms(time); } void __init perfmon_register(struct perfmon_dev *dev) { const struct perfmon_dev_ops *ops; ops = dev->ops; assert(ops->translate && ops->alloc && ops->free && ops->start && ops->stop && ops->read); assert(dev->pmc_width <= 64); if ((dev->ops->handle_overflow_intr == NULL) && (dev->poll_interval == 0)) { dev->poll_interval = perfmon_compute_poll_interval(dev->pmc_width); } perfmon_pmu_set_dev(perfmon_get_pmu(), dev); } void perfmon_overflow_intr(void) { perfmon_pmu_handle_overflow_intr(perfmon_get_pmu()); } void perfmon_report_overflow(unsigned int pmc_index) { struct perfmon_cpu_pmu *cpu_pmu; struct perfmon_cpu_pmc *cpu_pmc; assert(!cpu_intr_enabled()); assert(!thread_preempt_enabled()); cpu_pmu = perfmon_get_local_cpu_pmu(); cpu_pmc = perfmon_cpu_pmu_get_pmc(cpu_pmu, pmc_index); perfmon_cpu_pmu_update_pmc(cpu_pmu, cpu_pmc); } static int __init perfmon_bootstrap(void) { perfmon_pmu_init(perfmon_get_pmu()); return 0; } INIT_OP_DEFINE(perfmon_bootstrap, INIT_OP_DEP(log_setup, true), INIT_OP_DEP(spinlock_setup, true)); static int __init perfmon_setup(void) { struct perfmon_dev *dev; dev = perfmon_pmu_get_dev(perfmon_get_pmu()); if (!dev) { return ENODEV; } for (unsigned int cpu = 0; cpu < cpu_count(); cpu++) { perfmon_cpu_pmu_init(perfmon_get_cpu_pmu(cpu), cpu, dev); } return 0; } INIT_OP_DEFINE(perfmon_setup, INIT_OP_DEP(boot_setup_pmu, true), INIT_OP_DEP(cpu_mp_probe, true), INIT_OP_DEP(cpu_setup, true), INIT_OP_DEP(percpu_setup, true), INIT_OP_DEP(perfmon_bootstrap, true), INIT_OP_DEP(spinlock_setup, true), INIT_OP_DEP(syscnt_setup, true));