summaryrefslogtreecommitdiff
path: root/kern/spinlock.c
blob: 71e60cb6d5dcd40f7304c5cb2f574c1611dd9764 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/*
 * Copyright (c) 2017-2018 Richard Braun.
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *
 * This implementation is based on the paper "Algorithms for Scalable
 * Synchronization on Shared-Memory Multiprocessors" by John M. Mellor-Crummey
 * and Michael L. Scott, which describes MCS locks, among other algorithms.
 *
 * Here are additional issues this module solves that require modifications
 * to the original MCS algorithm :
 *  - There must not be any limit on the number of spin locks a thread may
 *    hold, and spinlocks must not need dynamic memory allocation.
 *  - Unlocking a spin lock must be a non-blocking operation. Without
 *    this requirement, a locking operation may be interrupted in the
 *    middle of a hand-off sequence, preventing the unlock operation
 *    from completing, potentially causing tricky deadlocks.
 *  - Spin lock storage must not exceed 32 bits.
 *
 * In order to solve these issues, the lock owner is never part of the
 * lock queue. This makes it possible to use a qnode only during the lock
 * operation, not after. This means a single qnode per execution context
 * is required even when holding multiple spin locks simultaneously.
 *
 * In addition, instead of making the owner perform a hand-off sequence
 * to unblock the first waiter when unlocking, the latter directly spins
 * on the lock word, and is the one performing the hand-off sequence with
 * the second waiter. As a side effect, this also optimizes spinning for
 * the common case of a single waiter.
 *
 * When a lock is held, the lock bit is set, and when a lock is contended
 * the contended bit is set. When contended, the lock word also contains
 * a compressed reference to the last waiter. That reference is called a
 * QID (for qnode ID). It is structured into two parts :
 *  - the execution context
 *  - the CPU ID
 *
 * The QID is used to uniquely identify a statically allocated qnode.
 *
 * The lock operation must make sure that the lock value is restored
 * to SPINLOCK_LOCKED if there is no more contention, an operation
 * called downgrading.
 */

#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <stdalign.h>
#include <stddef.h>
#include <stdint.h>

#include <kern/atomic.h>
#include <kern/init.h>
#include <kern/macros.h>
#include <kern/percpu.h>
#include <kern/spinlock.h>
#include <kern/spinlock_i.h>
#include <kern/spinlock_types.h>
#include <kern/thread.h>
#include <machine/cpu.h>

#define SPINLOCK_CONTENDED          0x2

#define SPINLOCK_LOCKED_BITS        1
#define SPINLOCK_CONTENDED_BITS     1

#define SPINLOCK_QID_SHIFT          (SPINLOCK_CONTENDED_BITS \
                                     + SPINLOCK_LOCKED_BITS)

#define SPINLOCK_QID_CTX_BITS       1
#define SPINLOCK_QID_CTX_SHIFT      0
#define SPINLOCK_QID_CTX_MASK       ((1U << SPINLOCK_QID_CTX_BITS) - 1)

#define SPINLOCK_QID_CPU_BITS       29
#define SPINLOCK_QID_CPU_SHIFT      (SPINLOCK_QID_CTX_SHIFT \
                                     + SPINLOCK_QID_CTX_BITS)
#define SPINLOCK_QID_CPU_MASK       ((1U << SPINLOCK_QID_CPU_BITS) - 1)

#define SPINLOCK_BITS               (SPINLOCK_QID_CPU_BITS      \
                                     + SPINLOCK_QID_CTX_BITS    \
                                     + SPINLOCK_CONTENDED_BITS  \
                                     + SPINLOCK_LOCKED_BITS)

#if CONFIG_MAX_CPUS > (1U << SPINLOCK_QID_CPU_BITS)
#error "maximum number of supported processors too large"
#endif

static_assert(SPINLOCK_BITS <= (CHAR_BIT * sizeof(uint32_t)),
              "spinlock too large");

struct spinlock_qnode {
    alignas(CPU_L1_SIZE) struct spinlock_qnode *next;
    bool locked;
};

/* TODO NMI support */
enum {
    SPINLOCK_CTX_THREAD,
    SPINLOCK_CTX_INTR,
    SPINLOCK_NR_CTXS
};

static_assert(SPINLOCK_NR_CTXS <= (SPINLOCK_QID_CTX_MASK + 1),
              "maximum number of contexts too large");

struct spinlock_cpu_data {
    struct spinlock_qnode qnodes[SPINLOCK_NR_CTXS];
};

static struct spinlock_cpu_data spinlock_cpu_data __percpu;

static struct spinlock_qnode *
spinlock_cpu_data_get_qnode(struct spinlock_cpu_data *cpu_data,
                            unsigned int ctx)
{
    assert(ctx < ARRAY_SIZE(cpu_data->qnodes));
    return &cpu_data->qnodes[ctx];
}

static uint32_t
spinlock_qid_build(unsigned int ctx, unsigned int cpu)
{
    assert(ctx <= SPINLOCK_QID_CTX_MASK);
    assert(cpu <= SPINLOCK_QID_CPU_MASK);

    return (cpu << SPINLOCK_QID_CPU_SHIFT) | (ctx << SPINLOCK_QID_CTX_SHIFT);
}

static unsigned int
spinlock_qid_ctx(uint32_t qid)
{
    return (qid >> SPINLOCK_QID_CTX_SHIFT) & SPINLOCK_QID_CTX_MASK;
}

static unsigned int
spinlock_qid_cpu(uint32_t qid)
{
    return (qid >> SPINLOCK_QID_CPU_SHIFT) & SPINLOCK_QID_CPU_MASK;
}

void
spinlock_init(struct spinlock *lock)
{
    lock->value = SPINLOCK_UNLOCKED;

#ifdef SPINLOCK_TRACK_OWNER
    lock->owner = NULL;
#endif /* SPINLOCK_TRACK_OWNER */
}

static void
spinlock_qnode_init(struct spinlock_qnode *qnode)
{
    qnode->next = NULL;
}

static struct spinlock_qnode *
spinlock_qnode_wait_next(const struct spinlock_qnode *qnode)
{
    struct spinlock_qnode *next;

    for (;;) {
        next = atomic_load(&qnode->next, ATOMIC_ACQUIRE);

        if (next) {
            break;
        }

        cpu_pause();
    }

    return next;
}

static void
spinlock_qnode_set_next(struct spinlock_qnode *qnode, struct spinlock_qnode *next)
{
    assert(next);
    atomic_store(&qnode->next, next, ATOMIC_RELEASE);
}

static void
spinlock_qnode_set_locked(struct spinlock_qnode *qnode)
{
    qnode->locked = true;
}

static void
spinlock_qnode_wait_locked(const struct spinlock_qnode *qnode)
{
    bool locked;

    for (;;) {
        locked = atomic_load(&qnode->locked, ATOMIC_ACQUIRE);

        if (!locked) {
            break;
        }

        cpu_pause();
    }
}

static void
spinlock_qnode_clear_locked(struct spinlock_qnode *qnode)
{
    atomic_store(&qnode->locked, false, ATOMIC_RELEASE);
}

static void
spinlock_get_local_qnode(struct spinlock_qnode **qnode, uint32_t *qid)
{
    struct spinlock_cpu_data *cpu_data;
    unsigned int ctx;

    cpu_data = cpu_local_ptr(spinlock_cpu_data);
    ctx = thread_interrupted() ? SPINLOCK_CTX_INTR : SPINLOCK_CTX_THREAD;
    *qnode = spinlock_cpu_data_get_qnode(cpu_data, ctx);
    *qid = spinlock_qid_build(ctx, cpu_id());
}

static uint32_t
spinlock_enqueue(struct spinlock *lock, uint32_t qid)
{
    uint32_t old_value, new_value, prev, next;

    next = (qid << SPINLOCK_QID_SHIFT) | SPINLOCK_CONTENDED;

    for (;;) {
        old_value = atomic_load(&lock->value, ATOMIC_RELAXED);
        new_value = next | (old_value & SPINLOCK_LOCKED);
        prev = atomic_cas(&lock->value, old_value, new_value, ATOMIC_RELEASE);

        if (prev == old_value) {
            break;
        }

        cpu_pause();
    }

    return prev;
}

static struct spinlock_qnode *
spinlock_get_remote_qnode(uint32_t qid)
{
    struct spinlock_cpu_data *cpu_data;
    unsigned int ctx, cpu;

    /* This fence synchronizes with queueing */
    atomic_fence(ATOMIC_ACQUIRE);

    ctx = spinlock_qid_ctx(qid);
    cpu = spinlock_qid_cpu(qid);
    cpu_data = percpu_ptr(spinlock_cpu_data, cpu);
    return spinlock_cpu_data_get_qnode(cpu_data, ctx);
}

static void
spinlock_set_locked(struct spinlock *lock)
{
    atomic_or(&lock->value, SPINLOCK_LOCKED, ATOMIC_RELAXED);
}

static void
spinlock_wait_locked(const struct spinlock *lock)
{
    uint32_t value;

    for (;;) {
        value = atomic_load(&lock->value, ATOMIC_ACQUIRE);

        if (!(value & SPINLOCK_LOCKED)) {
            break;
        }

        cpu_pause();
    }
}

static int
spinlock_downgrade(struct spinlock *lock, uint32_t qid)
{
    uint32_t value, prev;

    value = (qid << SPINLOCK_QID_SHIFT) | SPINLOCK_CONTENDED;
    prev = atomic_cas(&lock->value, value, SPINLOCK_LOCKED, ATOMIC_RELAXED);
    assert(prev & SPINLOCK_CONTENDED);

    if (prev != value) {
        return EBUSY;
    }

    return 0;
}

void
spinlock_lock_slow(struct spinlock *lock)
{
    struct spinlock_qnode *qnode, *prev_qnode, *next_qnode;
    uint32_t prev, qid;
    int error;

    spinlock_get_local_qnode(&qnode, &qid);
    spinlock_qnode_init(qnode);

    prev = spinlock_enqueue(lock, qid);

    if (prev & SPINLOCK_CONTENDED) {
        prev_qnode = spinlock_get_remote_qnode(prev >> SPINLOCK_QID_SHIFT);
        spinlock_qnode_set_locked(qnode);
        spinlock_qnode_set_next(prev_qnode, qnode);
        spinlock_qnode_wait_locked(qnode);
    }

    /*
     * If uncontended, the previous lock value could be used to check whether
     * the lock bit was also cleared, but this wait operation also enforces
     * acquire ordering.
     */
    spinlock_wait_locked(lock);

    spinlock_own(lock);
    error = spinlock_downgrade(lock, qid);

    if (!error) {
        return;
    }

    spinlock_set_locked(lock);
    next_qnode = spinlock_qnode_wait_next(qnode);
    spinlock_qnode_clear_locked(next_qnode);
}

static int __init
spinlock_setup(void)
{
    return 0;
}

INIT_OP_DEFINE(spinlock_setup,
               INIT_OP_DEP(thread_setup_booter, true));