/* * Copyright (c) 2014 Richard Braun. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * * This test module checks that the no-reference function of a scalable * reference counter is actually called when the number of references drops * to 0. An initial master thread creates a bunch of slave threads, more * than the number of processors to enforce migrations. These slaves wait * for the master to allocate a page for a test object with a scalable * reference counter. Once they receive the page, they manipulate the * counter until the master thread tells them to stop. The master thread * also manipulates the counter for a fixed number of iterations before * stopping the slaves. The master thread then joins all slaves to make * sure all of them have released their reference on the test object. * Finally, it releases the initial reference, at which point, the * no-reference function should be called. * * Notes: the number of loops must be large enough to allow many epochs * to occur. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NR_LOOPS (100UL * 1000 * 1000) struct test_obj { struct sref_counter ref_counter; }; static struct condition test_condition; static struct mutex test_lock; static struct test_obj *test_obj; static volatile int test_stop; static void test_manipulate_counter(struct test_obj *obj) { sref_counter_inc(&obj->ref_counter); thread_yield(); sref_counter_dec(&obj->ref_counter); thread_yield(); } static void test_ref(void *arg) { struct test_obj *obj; (void)arg; mutex_lock(&test_lock); printf("waiting for page\n"); while (test_obj == NULL) { condition_wait(&test_condition, &test_lock); } obj = test_obj; mutex_unlock(&test_lock); printf("page received, manipulate reference counter\n"); while (!test_stop) { test_manipulate_counter(obj); } printf("thread exiting\n"); } static void test_obj_noref(struct sref_counter *counter) { struct test_obj *obj; obj = structof(counter, struct test_obj, ref_counter); vm_kmem_free(obj, sizeof(*obj)); printf("0 references, page released\n"); syscnt_info("sref_epoch"); syscnt_info("sref_dirty_zero"); syscnt_info("sref_true_zero"); } static void test_run(void *arg) { char name[THREAD_NAME_SIZE]; struct thread_attr attr; struct thread **threads; struct test_obj *obj; volatile unsigned long loop; unsigned int i, nr_threads; int error; (void)arg; nr_threads = cpu_count() + 1; threads = kmem_alloc(sizeof(*threads) * nr_threads); if (threads == NULL) { panic("kmem_alloc: %s", strerror(ENOMEM)); } for (i = 0; i < nr_threads; i++) { snprintf(name, sizeof(name), THREAD_KERNEL_PREFIX "test_ref/%u", i); thread_attr_init(&attr, name); error = thread_create(&threads[i], &attr, test_ref, NULL); error_check(error, "thread_create"); } printf("allocating page\n"); obj = vm_kmem_alloc(sizeof(*obj)); if (obj == NULL) { panic("vm_kmem_alloc: %s", strerror(ENOMEM)); } sref_counter_init(&obj->ref_counter, 1, NULL, test_obj_noref); printf("page allocated, 1 reference, publishing\n"); mutex_lock(&test_lock); test_obj = obj; condition_broadcast(&test_condition); mutex_unlock(&test_lock); for (loop = 0; loop < NR_LOOPS; loop++) { test_manipulate_counter(obj); } printf("stopping test, wait for threads\n"); test_stop = 1; for (i = 0; i < nr_threads; i++) { thread_join(threads[i]); } printf("releasing initial reference\n"); sref_counter_dec(&obj->ref_counter); kmem_free(threads, sizeof(*threads) * nr_threads); } void __init test_setup(void) { struct thread_attr attr; struct thread *thread; int error; condition_init(&test_condition); mutex_init(&test_lock); thread_attr_init(&attr, THREAD_KERNEL_PREFIX "test_run"); thread_attr_set_detached(&attr); error = thread_create(&thread, &attr, test_run, NULL); error_check(error, "thread_create"); }