/* * Copyright (c) 2017 Richard Braun. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * * This test module is a stress test, expected to never terminate, of the * timed lock functionality provided by the mutex implementations. The * two conditions for success are : * - no assertion triggered * - all debugging system counters of the selected mutex implementation * must be non-zero after some time. * * The system counters are meant to perform simple code coverage, asserting * all the tricky code paths are taken at least once. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TEST_MIN_CPUS 3 #define TEST_REPORT_INTERVAL 10000 struct test { struct mutex mutex; unsigned int counter; }; static struct timer test_timer; static void test_run(void *arg) { unsigned int prev, counter; struct test *test; int error; test = arg; for (counter = 1; /* no condition */; counter++) { if ((counter % 1024) == 0) { printf("%s ", thread_self()->name); } error = mutex_timedlock(&test->mutex, clock_get_time() + 1); if (error) { thread_delay(1, false); continue; } prev = atomic_fetch_add(&test->counter, 1, ATOMIC_SEQ_CST); if (prev != 0) { break; } if ((counter % 2) == 0) { cpu_delay(clock_ticks_to_ms(1) * 1000); } else { thread_delay(1, false); } prev = atomic_fetch_sub(&test->counter, 1, ATOMIC_SEQ_CST); if (prev != 1) { break; } mutex_unlock(&test->mutex); if ((counter % 2) == 0) { thread_delay(1, false); } } panic("test: invalid counter value (%u)", test->counter); } static struct test * test_create(unsigned int nr_threads) { char name[THREAD_NAME_SIZE]; struct thread_attr attr; struct thread *thread; struct cpumap *cpumap; struct test *test; int error; assert(nr_threads); test = kmem_alloc(sizeof(*test)); if (!test) { panic("test: unable to allocate memory"); } mutex_init(&test->mutex); test->counter = 0; error = cpumap_create(&cpumap); error_check(error, "cpumap_create"); for (size_t i = 0; i < nr_threads; i++) { cpumap_zero(cpumap); cpumap_set(cpumap, i % 3); snprintf(name, sizeof(name), THREAD_KERNEL_PREFIX "test_run:%u/%zu", nr_threads, i); thread_attr_init(&attr, name); thread_attr_set_detached(&attr); thread_attr_set_cpumap(&attr, cpumap); if (i < 2) { thread_attr_set_policy(&attr, THREAD_SCHED_POLICY_RR); thread_attr_set_priority(&attr, THREAD_SCHED_RT_PRIO_MIN + i); } error = thread_create(&thread, &attr, test_run, test); error_check(error, "thread_create"); } return test; } static void test_report_syscnt(struct timer *timer) { uint64_t time; #ifdef CONFIG_MUTEX_PI syscnt_info("rtmutex"); #else /* CONFIG_MUTEX_PI */ syscnt_info("mutex"); #endif /* CONFIG_MUTEX_PI */ time = timer_get_time(timer) + clock_ticks_from_ms(TEST_REPORT_INTERVAL); timer_schedule(timer, time); } void __init test_setup(void) { uint64_t time; if (cpu_count() < TEST_MIN_CPUS) { panic("test: at least %u processors are required", TEST_MIN_CPUS); } test_create(1); test_create(2); test_create(3); test_create(10); timer_init(&test_timer, test_report_syscnt, TIMER_DETACHED); time = clock_get_time() + clock_ticks_from_ms(TEST_REPORT_INTERVAL); timer_schedule(&test_timer, time); }