// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */ #include #include #include #include #include "wx_type.h" #include "wx_hw.h" static void wx_intr_disable(struct wx_hw *wxhw, u64 qmask) { u32 mask; mask = (qmask & 0xFFFFFFFF); if (mask) wr32(wxhw, WX_PX_IMS(0), mask); if (wxhw->mac.type == wx_mac_sp) { mask = (qmask >> 32); if (mask) wr32(wxhw, WX_PX_IMS(1), mask); } } /* cmd_addr is used for some special command: * 1. to be sector address, when implemented erase sector command * 2. to be flash address when implemented read, write flash address */ static int wx_fmgr_cmd_op(struct wx_hw *wxhw, u32 cmd, u32 cmd_addr) { u32 cmd_val = 0, val = 0; cmd_val = WX_SPI_CMD_CMD(cmd) | WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) | cmd_addr; wr32(wxhw, WX_SPI_CMD, cmd_val); return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000, false, wxhw, WX_SPI_STATUS); } static int wx_flash_read_dword(struct wx_hw *wxhw, u32 addr, u32 *data) { int ret = 0; ret = wx_fmgr_cmd_op(wxhw, WX_SPI_CMD_READ_DWORD, addr); if (ret < 0) return ret; *data = rd32(wxhw, WX_SPI_DATA); return ret; } int wx_check_flash_load(struct wx_hw *hw, u32 check_bit) { u32 reg = 0; int err = 0; /* if there's flash existing */ if (!(rd32(hw, WX_SPI_STATUS) & WX_SPI_STATUS_FLASH_BYPASS)) { /* wait hw load flash done */ err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000, false, hw, WX_SPI_ILDR_STATUS); if (err < 0) wx_err(hw, "Check flash load timeout.\n"); } return err; } EXPORT_SYMBOL(wx_check_flash_load); /** * wx_get_mac_addr - Generic get MAC address * @wxhw: pointer to hardware structure * @mac_addr: Adapter MAC address * * Reads the adapter's MAC address from first Receive Address Register (RAR0) * A reset of the adapter must be performed prior to calling this function * in order for the MAC address to have been loaded from the EEPROM into RAR0 **/ void wx_get_mac_addr(struct wx_hw *wxhw, u8 *mac_addr) { u32 rar_high; u32 rar_low; u16 i; wr32(wxhw, WX_PSR_MAC_SWC_IDX, 0); rar_high = rd32(wxhw, WX_PSR_MAC_SWC_AD_H); rar_low = rd32(wxhw, WX_PSR_MAC_SWC_AD_L); for (i = 0; i < 2; i++) mac_addr[i] = (u8)(rar_high >> (1 - i) * 8); for (i = 0; i < 4; i++) mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8); } EXPORT_SYMBOL(wx_get_mac_addr); /** * wx_set_rar - Set Rx address register * @wxhw: pointer to hardware structure * @index: Receive address register to write * @addr: Address to put into receive address register * @pools: VMDq "set" or "pool" index * @enable_addr: set flag that address is active * * Puts an ethernet address into a receive address register. **/ int wx_set_rar(struct wx_hw *wxhw, u32 index, u8 *addr, u64 pools, u32 enable_addr) { u32 rar_entries = wxhw->mac.num_rar_entries; u32 rar_low, rar_high; /* Make sure we are using a valid rar index range */ if (index >= rar_entries) { wx_err(wxhw, "RAR index %d is out of range.\n", index); return -EINVAL; } /* select the MAC address */ wr32(wxhw, WX_PSR_MAC_SWC_IDX, index); /* setup VMDq pool mapping */ wr32(wxhw, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF); if (wxhw->mac.type == wx_mac_sp) wr32(wxhw, WX_PSR_MAC_SWC_VM_H, pools >> 32); /* HW expects these in little endian so we reverse the byte * order from network order (big endian) to little endian * * Some parts put the VMDq setting in the extra RAH bits, * so save everything except the lower 16 bits that hold part * of the address and the address valid bit. */ rar_low = ((u32)addr[5] | ((u32)addr[4] << 8) | ((u32)addr[3] << 16) | ((u32)addr[2] << 24)); rar_high = ((u32)addr[1] | ((u32)addr[0] << 8)); if (enable_addr != 0) rar_high |= WX_PSR_MAC_SWC_AD_H_AV; wr32(wxhw, WX_PSR_MAC_SWC_AD_L, rar_low); wr32m(wxhw, WX_PSR_MAC_SWC_AD_H, (WX_PSR_MAC_SWC_AD_H_AD(~0) | WX_PSR_MAC_SWC_AD_H_ADTYPE(~0) | WX_PSR_MAC_SWC_AD_H_AV), rar_high); return 0; } EXPORT_SYMBOL(wx_set_rar); /** * wx_clear_rar - Remove Rx address register * @wxhw: pointer to hardware structure * @index: Receive address register to write * * Clears an ethernet address from a receive address register. **/ int wx_clear_rar(struct wx_hw *wxhw, u32 index) { u32 rar_entries = wxhw->mac.num_rar_entries; /* Make sure we are using a valid rar index range */ if (index >= rar_entries) { wx_err(wxhw, "RAR index %d is out of range.\n", index); return -EINVAL; } /* Some parts put the VMDq setting in the extra RAH bits, * so save everything except the lower 16 bits that hold part * of the address and the address valid bit. */ wr32(wxhw, WX_PSR_MAC_SWC_IDX, index); wr32(wxhw, WX_PSR_MAC_SWC_VM_L, 0); wr32(wxhw, WX_PSR_MAC_SWC_VM_H, 0); wr32(wxhw, WX_PSR_MAC_SWC_AD_L, 0); wr32m(wxhw, WX_PSR_MAC_SWC_AD_H, (WX_PSR_MAC_SWC_AD_H_AD(~0) | WX_PSR_MAC_SWC_AD_H_ADTYPE(~0) | WX_PSR_MAC_SWC_AD_H_AV), 0); return 0; } EXPORT_SYMBOL(wx_clear_rar); /** * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address * @wxhw: pointer to hardware struct * @rar: receive address register index to disassociate * @vmdq: VMDq pool index to remove from the rar **/ static int wx_clear_vmdq(struct wx_hw *wxhw, u32 rar, u32 __maybe_unused vmdq) { u32 rar_entries = wxhw->mac.num_rar_entries; u32 mpsar_lo, mpsar_hi; /* Make sure we are using a valid rar index range */ if (rar >= rar_entries) { wx_err(wxhw, "RAR index %d is out of range.\n", rar); return -EINVAL; } wr32(wxhw, WX_PSR_MAC_SWC_IDX, rar); mpsar_lo = rd32(wxhw, WX_PSR_MAC_SWC_VM_L); mpsar_hi = rd32(wxhw, WX_PSR_MAC_SWC_VM_H); if (!mpsar_lo && !mpsar_hi) return 0; /* was that the last pool using this rar? */ if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) wx_clear_rar(wxhw, rar); return 0; } /** * wx_init_uta_tables - Initialize the Unicast Table Array * @wxhw: pointer to hardware structure **/ static void wx_init_uta_tables(struct wx_hw *wxhw) { int i; wx_dbg(wxhw, " Clearing UTA\n"); for (i = 0; i < 128; i++) wr32(wxhw, WX_PSR_UC_TBL(i), 0); } /** * wx_init_rx_addrs - Initializes receive address filters. * @wxhw: pointer to hardware structure * * Places the MAC address in receive address register 0 and clears the rest * of the receive address registers. Clears the multicast table. Assumes * the receiver is in reset when the routine is called. **/ void wx_init_rx_addrs(struct wx_hw *wxhw) { u32 rar_entries = wxhw->mac.num_rar_entries; u32 psrctl; int i; /* If the current mac address is valid, assume it is a software override * to the permanent address. * Otherwise, use the permanent address from the eeprom. */ if (!is_valid_ether_addr(wxhw->mac.addr)) { /* Get the MAC address from the RAR0 for later reference */ wx_get_mac_addr(wxhw, wxhw->mac.addr); wx_dbg(wxhw, "Keeping Current RAR0 Addr = %pM\n", wxhw->mac.addr); } else { /* Setup the receive address. */ wx_dbg(wxhw, "Overriding MAC Address in RAR[0]\n"); wx_dbg(wxhw, "New MAC Addr = %pM\n", wxhw->mac.addr); wx_set_rar(wxhw, 0, wxhw->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV); if (wxhw->mac.type == wx_mac_sp) { /* clear VMDq pool/queue selection for RAR 0 */ wx_clear_vmdq(wxhw, 0, WX_CLEAR_VMDQ_ALL); } } /* Zero out the other receive addresses. */ wx_dbg(wxhw, "Clearing RAR[1-%d]\n", rar_entries - 1); for (i = 1; i < rar_entries; i++) { wr32(wxhw, WX_PSR_MAC_SWC_IDX, i); wr32(wxhw, WX_PSR_MAC_SWC_AD_L, 0); wr32(wxhw, WX_PSR_MAC_SWC_AD_H, 0); } /* Clear the MTA */ wxhw->addr_ctrl.mta_in_use = 0; psrctl = rd32(wxhw, WX_PSR_CTL); psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); psrctl |= wxhw->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT; wr32(wxhw, WX_PSR_CTL, psrctl); wx_dbg(wxhw, " Clearing MTA\n"); for (i = 0; i < wxhw->mac.mcft_size; i++) wr32(wxhw, WX_PSR_MC_TBL(i), 0); wx_init_uta_tables(wxhw); } EXPORT_SYMBOL(wx_init_rx_addrs); void wx_disable_rx(struct wx_hw *wxhw) { u32 pfdtxgswc; u32 rxctrl; rxctrl = rd32(wxhw, WX_RDB_PB_CTL); if (rxctrl & WX_RDB_PB_CTL_RXEN) { pfdtxgswc = rd32(wxhw, WX_PSR_CTL); if (pfdtxgswc & WX_PSR_CTL_SW_EN) { pfdtxgswc &= ~WX_PSR_CTL_SW_EN; wr32(wxhw, WX_PSR_CTL, pfdtxgswc); wxhw->mac.set_lben = true; } else { wxhw->mac.set_lben = false; } rxctrl &= ~WX_RDB_PB_CTL_RXEN; wr32(wxhw, WX_RDB_PB_CTL, rxctrl); if (!(((wxhw->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) || ((wxhw->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) { /* disable mac receiver */ wr32m(wxhw, WX_MAC_RX_CFG, WX_MAC_RX_CFG_RE, 0); } } } EXPORT_SYMBOL(wx_disable_rx); /** * wx_disable_pcie_master - Disable PCI-express master access * @wxhw: pointer to hardware structure * * Disables PCI-Express master access and verifies there are no pending * requests. **/ int wx_disable_pcie_master(struct wx_hw *wxhw) { int status = 0; u32 val; /* Always set this bit to ensure any future transactions are blocked */ pci_clear_master(wxhw->pdev); /* Exit if master requests are blocked */ if (!(rd32(wxhw, WX_PX_TRANSACTION_PENDING))) return 0; /* Poll for master request bit to clear */ status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT, false, wxhw, WX_PX_TRANSACTION_PENDING); if (status < 0) wx_err(wxhw, "PCIe transaction pending bit did not clear.\n"); return status; } EXPORT_SYMBOL(wx_disable_pcie_master); /** * wx_stop_adapter - Generic stop Tx/Rx units * @wxhw: pointer to hardware structure * * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts, * disables transmit and receive units. The adapter_stopped flag is used by * the shared code and drivers to determine if the adapter is in a stopped * state and should not touch the hardware. **/ int wx_stop_adapter(struct wx_hw *wxhw) { u16 i; /* Set the adapter_stopped flag so other driver functions stop touching * the hardware */ wxhw->adapter_stopped = true; /* Disable the receive unit */ wx_disable_rx(wxhw); /* Set interrupt mask to stop interrupts from being generated */ wx_intr_disable(wxhw, WX_INTR_ALL); /* Clear any pending interrupts, flush previous writes */ wr32(wxhw, WX_PX_MISC_IC, 0xffffffff); wr32(wxhw, WX_BME_CTL, 0x3); /* Disable the transmit unit. Each queue must be disabled. */ for (i = 0; i < wxhw->mac.max_tx_queues; i++) { wr32m(wxhw, WX_PX_TR_CFG(i), WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE, WX_PX_TR_CFG_SWFLSH); } /* Disable the receive unit by stopping each queue */ for (i = 0; i < wxhw->mac.max_rx_queues; i++) { wr32m(wxhw, WX_PX_RR_CFG(i), WX_PX_RR_CFG_RR_EN, 0); } /* flush all queues disables */ WX_WRITE_FLUSH(wxhw); /* Prevent the PCI-E bus from hanging by disabling PCI-E master * access and verify no pending requests */ return wx_disable_pcie_master(wxhw); } EXPORT_SYMBOL(wx_stop_adapter); void wx_reset_misc(struct wx_hw *wxhw) { int i; /* receive packets that size > 2048 */ wr32m(wxhw, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE); /* clear counters on read */ wr32m(wxhw, WX_MMC_CONTROL, WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD); wr32m(wxhw, WX_MAC_RX_FLOW_CTRL, WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE); wr32(wxhw, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR); wr32m(wxhw, WX_MIS_RST_ST, WX_MIS_RST_ST_RST_INIT, 0x1E00); /* errata 4: initialize mng flex tbl and wakeup flex tbl*/ wr32(wxhw, WX_PSR_MNG_FLEX_SEL, 0); for (i = 0; i < 16; i++) { wr32(wxhw, WX_PSR_MNG_FLEX_DW_L(i), 0); wr32(wxhw, WX_PSR_MNG_FLEX_DW_H(i), 0); wr32(wxhw, WX_PSR_MNG_FLEX_MSK(i), 0); } wr32(wxhw, WX_PSR_LAN_FLEX_SEL, 0); for (i = 0; i < 16; i++) { wr32(wxhw, WX_PSR_LAN_FLEX_DW_L(i), 0); wr32(wxhw, WX_PSR_LAN_FLEX_DW_H(i), 0); wr32(wxhw, WX_PSR_LAN_FLEX_MSK(i), 0); } /* set pause frame dst mac addr */ wr32(wxhw, WX_RDB_PFCMACDAL, 0xC2000001); wr32(wxhw, WX_RDB_PFCMACDAH, 0x0180); } EXPORT_SYMBOL(wx_reset_misc); int wx_sw_init(struct wx_hw *wxhw) { struct pci_dev *pdev = wxhw->pdev; u32 ssid = 0; int err = 0; wxhw->vendor_id = pdev->vendor; wxhw->device_id = pdev->device; wxhw->revision_id = pdev->revision; wxhw->oem_svid = pdev->subsystem_vendor; wxhw->oem_ssid = pdev->subsystem_device; wxhw->bus.device = PCI_SLOT(pdev->devfn); wxhw->bus.func = PCI_FUNC(pdev->devfn); if (wxhw->oem_svid == PCI_VENDOR_ID_WANGXUN) { wxhw->subsystem_vendor_id = pdev->subsystem_vendor; wxhw->subsystem_device_id = pdev->subsystem_device; } else { err = wx_flash_read_dword(wxhw, 0xfffdc, &ssid); if (!err) wxhw->subsystem_device_id = swab16((u16)ssid); return err; } return 0; } EXPORT_SYMBOL(wx_sw_init); MODULE_LICENSE("GPL");