// SPDX-License-Identifier: GPL-2.0+ #include #include #include #include "../../drm_crtc_internal.h" #include "../vkms_formats.h" #define TEST_BUFF_SIZE 50 MODULE_IMPORT_NS("EXPORTED_FOR_KUNIT_TESTING"); /** * struct pixel_yuv_u8 - Internal representation of a pixel color. * @y: Luma value, stored in 8 bits, without padding, using * machine endianness * @u: Blue difference chroma value, stored in 8 bits, without padding, using * machine endianness * @v: Red difference chroma value, stored in 8 bits, without padding, using * machine endianness */ struct pixel_yuv_u8 { u8 y, u, v; }; /* * struct yuv_u8_to_argb_u16_case - Reference values to test the color * conversions in VKMS between YUV to ARGB * * @encoding: Encoding used to convert RGB to YUV * @range: Range used to convert RGB to YUV * @n_colors: Count of test colors in this case * @format_pair.name: Name used for this color conversion, used to * clarify the test results * @format_pair.rgb: RGB color tested * @format_pair.yuv: Same color as @format_pair.rgb, but converted to * YUV using @encoding and @range. */ struct yuv_u8_to_argb_u16_case { enum drm_color_encoding encoding; enum drm_color_range range; size_t n_colors; struct format_pair { char *name; struct pixel_yuv_u8 yuv; struct pixel_argb_u16 argb; } colors[TEST_BUFF_SIZE]; }; /* * The YUV color representation were acquired via the colour python framework. * Below are the function calls used for generating each case. * * For more information got to the docs: * https://colour.readthedocs.io/en/master/generated/colour.RGB_to_YCbCr.html */ static struct yuv_u8_to_argb_u16_case yuv_u8_to_argb_u16_cases[] = { /* * colour.RGB_to_YCbCr(, * K=colour.WEIGHTS_YCBCR["ITU-R BT.601"], * in_bits = 16, * in_legal = False, * in_int = True, * out_bits = 8, * out_legal = False, * out_int = True) * * Tests cases for color conversion generated by converting RGB * values to YUV BT601 full range using the ITU-R BT.601 weights. */ { .encoding = DRM_COLOR_YCBCR_BT601, .range = DRM_COLOR_YCBCR_FULL_RANGE, .n_colors = 6, .colors = { { "white", { 0xff, 0x80, 0x80 }, { 0xffff, 0xffff, 0xffff, 0xffff }}, { "gray", { 0x80, 0x80, 0x80 }, { 0xffff, 0x8080, 0x8080, 0x8080 }}, { "black", { 0x00, 0x80, 0x80 }, { 0xffff, 0x0000, 0x0000, 0x0000 }}, { "red", { 0x4c, 0x55, 0xff }, { 0xffff, 0xffff, 0x0000, 0x0000 }}, { "green", { 0x96, 0x2c, 0x15 }, { 0xffff, 0x0000, 0xffff, 0x0000 }}, { "blue", { 0x1d, 0xff, 0x6b }, { 0xffff, 0x0000, 0x0000, 0xffff }}, }, }, /* * colour.RGB_to_YCbCr(, * K=colour.WEIGHTS_YCBCR["ITU-R BT.601"], * in_bits = 16, * in_legal = False, * in_int = True, * out_bits = 8, * out_legal = True, * out_int = True) * Tests cases for color conversion generated by converting RGB * values to YUV BT601 limited range using the ITU-R BT.601 weights. */ { .encoding = DRM_COLOR_YCBCR_BT601, .range = DRM_COLOR_YCBCR_LIMITED_RANGE, .n_colors = 6, .colors = { { "white", { 0xeb, 0x80, 0x80 }, { 0xffff, 0xffff, 0xffff, 0xffff }}, { "gray", { 0x7e, 0x80, 0x80 }, { 0xffff, 0x8080, 0x8080, 0x8080 }}, { "black", { 0x10, 0x80, 0x80 }, { 0xffff, 0x0000, 0x0000, 0x0000 }}, { "red", { 0x51, 0x5a, 0xf0 }, { 0xffff, 0xffff, 0x0000, 0x0000 }}, { "green", { 0x91, 0x36, 0x22 }, { 0xffff, 0x0000, 0xffff, 0x0000 }}, { "blue", { 0x29, 0xf0, 0x6e }, { 0xffff, 0x0000, 0x0000, 0xffff }}, }, }, /* * colour.RGB_to_YCbCr(, * K=colour.WEIGHTS_YCBCR["ITU-R BT.709"], * in_bits = 16, * in_legal = False, * in_int = True, * out_bits = 8, * out_legal = False, * out_int = True) * Tests cases for color conversion generated by converting RGB * values to YUV BT709 full range using the ITU-R BT.709 weights. */ { .encoding = DRM_COLOR_YCBCR_BT709, .range = DRM_COLOR_YCBCR_FULL_RANGE, .n_colors = 6, .colors = { { "white", { 0xff, 0x80, 0x80 }, { 0xffff, 0xffff, 0xffff, 0xffff }}, { "gray", { 0x80, 0x80, 0x80 }, { 0xffff, 0x8080, 0x8080, 0x8080 }}, { "black", { 0x00, 0x80, 0x80 }, { 0xffff, 0x0000, 0x0000, 0x0000 }}, { "red", { 0x36, 0x63, 0xff }, { 0xffff, 0xffff, 0x0000, 0x0000 }}, { "green", { 0xb6, 0x1e, 0x0c }, { 0xffff, 0x0000, 0xffff, 0x0000 }}, { "blue", { 0x12, 0xff, 0x74 }, { 0xffff, 0x0000, 0x0000, 0xffff }}, }, }, /* * colour.RGB_to_YCbCr(, * K=colour.WEIGHTS_YCBCR["ITU-R BT.709"], * in_bits = 16, * int_legal = False, * in_int = True, * out_bits = 8, * out_legal = True, * out_int = True) * Tests cases for color conversion generated by converting RGB * values to YUV BT709 limited range using the ITU-R BT.709 weights. */ { .encoding = DRM_COLOR_YCBCR_BT709, .range = DRM_COLOR_YCBCR_LIMITED_RANGE, .n_colors = 6, .colors = { { "white", { 0xeb, 0x80, 0x80 }, { 0xffff, 0xffff, 0xffff, 0xffff }}, { "gray", { 0x7e, 0x80, 0x80 }, { 0xffff, 0x8080, 0x8080, 0x8080 }}, { "black", { 0x10, 0x80, 0x80 }, { 0xffff, 0x0000, 0x0000, 0x0000 }}, { "red", { 0x3f, 0x66, 0xf0 }, { 0xffff, 0xffff, 0x0000, 0x0000 }}, { "green", { 0xad, 0x2a, 0x1a }, { 0xffff, 0x0000, 0xffff, 0x0000 }}, { "blue", { 0x20, 0xf0, 0x76 }, { 0xffff, 0x0000, 0x0000, 0xffff }}, }, }, /* * colour.RGB_to_YCbCr(, * K=colour.WEIGHTS_YCBCR["ITU-R BT.2020"], * in_bits = 16, * in_legal = False, * in_int = True, * out_bits = 8, * out_legal = False, * out_int = True) * Tests cases for color conversion generated by converting RGB * values to YUV BT2020 full range using the ITU-R BT.2020 weights. */ { .encoding = DRM_COLOR_YCBCR_BT2020, .range = DRM_COLOR_YCBCR_FULL_RANGE, .n_colors = 6, .colors = { { "white", { 0xff, 0x80, 0x80 }, { 0xffff, 0xffff, 0xffff, 0xffff }}, { "gray", { 0x80, 0x80, 0x80 }, { 0xffff, 0x8080, 0x8080, 0x8080 }}, { "black", { 0x00, 0x80, 0x80 }, { 0xffff, 0x0000, 0x0000, 0x0000 }}, { "red", { 0x43, 0x5c, 0xff }, { 0xffff, 0xffff, 0x0000, 0x0000 }}, { "green", { 0xad, 0x24, 0x0b }, { 0xffff, 0x0000, 0xffff, 0x0000 }}, { "blue", { 0x0f, 0xff, 0x76 }, { 0xffff, 0x0000, 0x0000, 0xffff }}, }, }, /* * colour.RGB_to_YCbCr(, * K=colour.WEIGHTS_YCBCR["ITU-R BT.2020"], * in_bits = 16, * in_legal = False, * in_int = True, * out_bits = 8, * out_legal = True, * out_int = True) * Tests cases for color conversion generated by converting RGB * values to YUV BT2020 limited range using the ITU-R BT.2020 weights. */ { .encoding = DRM_COLOR_YCBCR_BT2020, .range = DRM_COLOR_YCBCR_LIMITED_RANGE, .n_colors = 6, .colors = { { "white", { 0xeb, 0x80, 0x80 }, { 0xffff, 0xffff, 0xffff, 0xffff }}, { "gray", { 0x7e, 0x80, 0x80 }, { 0xffff, 0x8080, 0x8080, 0x8080 }}, { "black", { 0x10, 0x80, 0x80 }, { 0xffff, 0x0000, 0x0000, 0x0000 }}, { "red", { 0x4a, 0x61, 0xf0 }, { 0xffff, 0xffff, 0x0000, 0x0000 }}, { "green", { 0xa4, 0x2f, 0x19 }, { 0xffff, 0x0000, 0xffff, 0x0000 }}, { "blue", { 0x1d, 0xf0, 0x77 }, { 0xffff, 0x0000, 0x0000, 0xffff }}, }, }, }; /* * vkms_format_test_yuv_u8_to_argb_u16 - Testing the conversion between YUV * colors to ARGB colors in VKMS * * This test will use the functions get_conversion_matrix_to_argb_u16 and * argb_u16_from_yuv888 to convert YUV colors (stored in * yuv_u8_to_argb_u16_cases) into ARGB colors. * * The conversion between YUV and RGB is not totally reversible, so there may be * some difference between the expected value and the result. * In addition, there may be some rounding error as the input color is 8 bits * and output color is 16 bits. */ static void vkms_format_test_yuv_u8_to_argb_u16(struct kunit *test) { const struct yuv_u8_to_argb_u16_case *param = test->param_value; struct pixel_argb_u16 argb; for (size_t i = 0; i < param->n_colors; i++) { const struct format_pair *color = ¶m->colors[i]; struct conversion_matrix matrix; get_conversion_matrix_to_argb_u16 (DRM_FORMAT_NV12, param->encoding, param->range, &matrix); argb = argb_u16_from_yuv888(color->yuv.y, color->yuv.u, color->yuv.v, &matrix); KUNIT_EXPECT_LE_MSG(test, abs_diff(argb.a, color->argb.a), 0x1ff, "On the A channel of the color %s expected 0x%04x, got 0x%04x", color->name, color->argb.a, argb.a); KUNIT_EXPECT_LE_MSG(test, abs_diff(argb.r, color->argb.r), 0x1ff, "On the R channel of the color %s expected 0x%04x, got 0x%04x", color->name, color->argb.r, argb.r); KUNIT_EXPECT_LE_MSG(test, abs_diff(argb.g, color->argb.g), 0x1ff, "On the G channel of the color %s expected 0x%04x, got 0x%04x", color->name, color->argb.g, argb.g); KUNIT_EXPECT_LE_MSG(test, abs_diff(argb.b, color->argb.b), 0x1ff, "On the B channel of the color %s expected 0x%04x, got 0x%04x", color->name, color->argb.b, argb.b); } } static void vkms_format_test_yuv_u8_to_argb_u16_case_desc(struct yuv_u8_to_argb_u16_case *t, char *desc) { snprintf(desc, KUNIT_PARAM_DESC_SIZE, "%s - %s", drm_get_color_encoding_name(t->encoding), drm_get_color_range_name(t->range)); } KUNIT_ARRAY_PARAM(yuv_u8_to_argb_u16, yuv_u8_to_argb_u16_cases, vkms_format_test_yuv_u8_to_argb_u16_case_desc ); static struct kunit_case vkms_format_test_cases[] = { KUNIT_CASE_PARAM(vkms_format_test_yuv_u8_to_argb_u16, yuv_u8_to_argb_u16_gen_params), {} }; static struct kunit_suite vkms_format_test_suite = { .name = "vkms-format", .test_cases = vkms_format_test_cases, }; kunit_test_suite(vkms_format_test_suite); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Kunit test for vkms format conversion");