/* Function powf vectorized with AVX2. Copyright (C) 2014-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include "svml_s_powf_data.h" .text ENTRY(_ZGVdN8vv_powf_avx2) /* ALGORITHM DESCRIPTION: We are using the next identity : pow(x,y) = 2^(y * log2(x)). 1) log2(x) calculation Here we use the following formula. Let |x|=2^k1*X1, where k1 is integer, 1<=X1<2. Let C ~= 1/ln(2), Rcp1 ~= 1/X1, X2=Rcp1*X1, Rcp2 ~= 1/X2, X3=Rcp2*X2, Rcp3 ~= 1/X3, Rcp3C ~= C/X3. Then log2|x| = k1 + log2(1/Rcp1) + log2(1/Rcp2) + log2(C/Rcp3C) + log2(X1*Rcp1*Rcp2*Rcp3C/C), where X1*Rcp1*Rcp2*Rcp3C = C*(1+q), q is very small. The values of Rcp1, log2(1/Rcp1), Rcp2, log2(1/Rcp2), Rcp3C, log2(C/Rcp3C) are taken from tables. Values of Rcp1, Rcp2, Rcp3C are such that RcpC=Rcp1*Rcp2*Rcp3C is exactly represented in target precision. log2(X1*Rcp1*Rcp2*Rcp3C/C) = log2(1+q) = ln(1+q)/ln2 = = 1/(ln2)*q - 1/(2ln2)*q^2 + 1/(3ln2)*q^3 - ... = = 1/(C*ln2)*cq - 1/(2*C^2*ln2)*cq^2 + 1/(3*C^3*ln2)*cq^3 - ... = = (1 + a1)*cq + a2*cq^2 + a3*cq^3 + ..., where cq=X1*Rcp1*Rcp2*Rcp3C-C, a1=1/(C*ln(2))-1 is small, a2=1/(2*C^2*ln2), a3=1/(3*C^3*ln2), ... Log2 result is split by three parts: HH+HL+HLL 2) Calculation of y*log2(x) Split y into YHi+YLo. Get high PH and medium PL parts of y*log2|x|. Get low PLL part of y*log2|x|. Now we have PH+PL+PLL ~= y*log2|x|. 3) Calculation of 2^(y*log2(x)) Let's represent PH+PL+PLL in the form N + j/2^expK + Z, where expK=7 in this implementation, N and j are integers, 0<=j<=2^expK-1, |Z|<2^(-expK-1). Hence 2^(PH+PL+PLL) ~= 2^N * 2^(j/2^expK) * 2^Z, where 2^(j/2^expK) is stored in a table, and 2^Z ~= 1 + B1*Z + B2*Z^2 ... + B5*Z^5. We compute 2^(PH+PL+PLL) as follows: Break PH into PHH + PHL, where PHH = N + j/2^expK. Z = PHL + PL + PLL Exp2Poly = B1*Z + B2*Z^2 ... + B5*Z^5 Get 2^(j/2^expK) from table in the form THI+TLO. Now we have 2^(PH+PL+PLL) ~= 2^N * (THI + TLO) * (1 + Exp2Poly). Get significand of 2^(PH+PL+PLL) in the form ResHi+ResLo: ResHi := THI ResLo := THI * Exp2Poly + TLO Get exponent ERes of the result: Res := ResHi + ResLo: Result := ex(Res) + N. */ pushq %rbp cfi_adjust_cfa_offset (8) cfi_rel_offset (%rbp, 0) movq %rsp, %rbp cfi_def_cfa_register (%rbp) andq $-64, %rsp subq $448, %rsp lea __VPACK_ODD_ind.6357.0.1(%rip), %rcx vmovups %ymm14, 320(%rsp) /* hi bits */ lea __VPACK_ODD_ind.6358.0.1(%rip), %rax vmovups %ymm12, 256(%rsp) vmovups %ymm9, 96(%rsp) vmovups %ymm13, 224(%rsp) vmovups %ymm15, 352(%rsp) vmovups %ymm11, 384(%rsp) vmovups %ymm10, 288(%rsp) vmovups (%rcx), %ymm10 vmovups %ymm8, 160(%rsp) vmovdqa %ymm1, %ymm9 movq __svml_spow_data@GOTPCREL(%rip), %rdx vextractf128 $1, %ymm0, %xmm7 vcvtps2pd %xmm0, %ymm14 vcvtps2pd %xmm7, %ymm12 vpsubd _NMINNORM(%rdx), %ymm0, %ymm7 /* preserve mantissa, set input exponent to 2^(-10) */ vandpd _ExpMask(%rdx), %ymm14, %ymm3 vandpd _ExpMask(%rdx), %ymm12, %ymm13 /* exponent bits selection */ vpsrlq $20, %ymm12, %ymm12 vpsrlq $20, %ymm14, %ymm14 vextractf128 $1, %ymm9, %xmm2 vcvtps2pd %xmm9, %ymm1 vpand _ABSMASK(%rdx), %ymm9, %ymm8 vcvtps2pd %xmm2, %ymm6 vorpd _Two10(%rdx), %ymm3, %ymm2 vorpd _Two10(%rdx), %ymm13, %ymm3 /* reciprocal approximation good to at least 11 bits */ vcvtpd2ps %ymm2, %xmm5 vcvtpd2ps %ymm3, %xmm15 vrcpps %xmm5, %xmm4 vrcpps %xmm15, %xmm11 vcvtps2pd %xmm4, %ymm13 vcvtps2pd %xmm11, %ymm4 vpermps %ymm12, %ymm10, %ymm11 /* round reciprocal to nearest integer, will have 1+9 mantissa bits */ vroundpd $0, %ymm13, %ymm12 vpermps %ymm14, %ymm10, %ymm5 vroundpd $0, %ymm4, %ymm14 vmovupd _One(%rdx), %ymm4 /* table lookup */ vpsrlq $40, %ymm12, %ymm10 vfmsub213pd %ymm4, %ymm12, %ymm2 vfmsub213pd %ymm4, %ymm14, %ymm3 vcmpgt_oqpd _Threshold(%rdx), %ymm12, %ymm12 vxorpd %ymm4, %ymm4, %ymm4 vandpd _Bias(%rdx), %ymm12, %ymm12 /* biased exponent in DP format */ vcvtdq2pd %xmm11, %ymm13 vpcmpeqd %ymm11, %ymm11, %ymm11 vgatherqpd %ymm11, _Log2Rcp_lookup(%rdx,%ymm10), %ymm4 vpsrlq $40, %ymm14, %ymm10 vcmpgt_oqpd _Threshold(%rdx), %ymm14, %ymm14 vpcmpeqd %ymm11, %ymm11, %ymm11 vandpd _Bias(%rdx), %ymm14, %ymm14 vcvtdq2pd %xmm5, %ymm15 vxorpd %ymm5, %ymm5, %ymm5 vgatherqpd %ymm11, _Log2Rcp_lookup(%rdx,%ymm10), %ymm5 vorpd _Bias1(%rdx), %ymm12, %ymm11 vorpd _Bias1(%rdx), %ymm14, %ymm10 vsubpd %ymm11, %ymm15, %ymm11 vsubpd %ymm10, %ymm13, %ymm14 vmovupd _poly_coeff_4(%rdx), %ymm15 vmovupd _poly_coeff_3(%rdx), %ymm13 vmulpd %ymm3, %ymm3, %ymm10 vfmadd213pd %ymm15, %ymm3, %ymm13 vmovdqa %ymm15, %ymm12 vfmadd231pd _poly_coeff_3(%rdx), %ymm2, %ymm12 vmulpd %ymm2, %ymm2, %ymm15 /* reconstruction */ vfmadd213pd %ymm3, %ymm10, %ymm13 vfmadd213pd %ymm2, %ymm15, %ymm12 vaddpd %ymm5, %ymm13, %ymm13 vaddpd %ymm4, %ymm12, %ymm2 vfmadd231pd _L2(%rdx), %ymm14, %ymm13 vfmadd132pd _L2(%rdx), %ymm2, %ymm11 vmulpd %ymm6, %ymm13, %ymm2 vmulpd %ymm1, %ymm11, %ymm10 vmulpd __dbInvLn2(%rdx), %ymm2, %ymm6 vmulpd __dbInvLn2(%rdx), %ymm10, %ymm15 /* to round down; if dR is an integer we will get R = 1, which is ok */ vsubpd __dbHALF(%rdx), %ymm6, %ymm3 vsubpd __dbHALF(%rdx), %ymm15, %ymm1 vaddpd __dbShifter(%rdx), %ymm3, %ymm13 vaddpd __dbShifter(%rdx), %ymm1, %ymm14 vsubpd __dbShifter(%rdx), %ymm13, %ymm12 vmovups (%rax), %ymm1 vsubpd __dbShifter(%rdx), %ymm14, %ymm11 /* [0..1) */ vsubpd %ymm12, %ymm6, %ymm6 vpermps %ymm10, %ymm1, %ymm3 vpermps %ymm2, %ymm1, %ymm10 vpcmpgtd _NMAXVAL(%rdx), %ymm7, %ymm4 vpcmpgtd _INF(%rdx), %ymm8, %ymm1 vpcmpeqd _NMAXVAL(%rdx), %ymm7, %ymm7 vpcmpeqd _INF(%rdx), %ymm8, %ymm8 vpor %ymm7, %ymm4, %ymm2 vpor %ymm8, %ymm1, %ymm1 vsubpd %ymm11, %ymm15, %ymm7 vinsertf128 $1, %xmm10, %ymm3, %ymm10 vpor %ymm1, %ymm2, %ymm3 /* iAbsX = iAbsX&iAbsMask */ vandps __iAbsMask(%rdx), %ymm10, %ymm10 /* iRangeMask = (iAbsX>iDomainRange) */ vpcmpgtd __iDomainRange(%rdx), %ymm10, %ymm4 vpor %ymm4, %ymm3, %ymm5 vmulpd __dbC1(%rdx), %ymm7, %ymm4 vmovmskps %ymm5, %ecx vmulpd __dbC1(%rdx), %ymm6, %ymm5 /* low K bits */ vandps __lbLOWKBITS(%rdx), %ymm14, %ymm6 /* dpP= _dbT+lJ*T_ITEM_GRAN */ vxorpd %ymm7, %ymm7, %ymm7 vpcmpeqd %ymm1, %ymm1, %ymm1 vandps __lbLOWKBITS(%rdx), %ymm13, %ymm2 vxorpd %ymm10, %ymm10, %ymm10 vpcmpeqd %ymm3, %ymm3, %ymm3 vgatherqpd %ymm1, 13952(%rdx,%ymm6,8), %ymm7 vgatherqpd %ymm3, 13952(%rdx,%ymm2,8), %ymm10 vpsrlq $11, %ymm14, %ymm14 vpsrlq $11, %ymm13, %ymm13 vfmadd213pd %ymm7, %ymm4, %ymm7 vfmadd213pd %ymm10, %ymm5, %ymm10 /* NB : including +/- sign for the exponent!! */ vpsllq $52, %ymm14, %ymm8 vpsllq $52, %ymm13, %ymm11 vpaddq %ymm8, %ymm7, %ymm12 vpaddq %ymm11, %ymm10, %ymm1 vcvtpd2ps %ymm12, %xmm15 vcvtpd2ps %ymm1, %xmm2 vinsertf128 $1, %xmm2, %ymm15, %ymm1 testl %ecx, %ecx jne .LBL_1_3 .LBL_1_2: cfi_remember_state vmovups 160(%rsp), %ymm8 vmovups 96(%rsp), %ymm9 vmovups 288(%rsp), %ymm10 vmovups 384(%rsp), %ymm11 vmovups 256(%rsp), %ymm12 vmovups 224(%rsp), %ymm13 vmovups 320(%rsp), %ymm14 vmovups 352(%rsp), %ymm15 vmovdqa %ymm1, %ymm0 movq %rbp, %rsp cfi_def_cfa_register (%rsp) popq %rbp cfi_adjust_cfa_offset (-8) cfi_restore (%rbp) ret .LBL_1_3: cfi_restore_state vmovups %ymm0, 64(%rsp) vmovups %ymm9, 128(%rsp) vmovups %ymm1, 192(%rsp) je .LBL_1_2 xorb %dl, %dl xorl %eax, %eax movq %rsi, 8(%rsp) movq %rdi, (%rsp) movq %r12, 40(%rsp) cfi_offset_rel_rsp (12, 40) movb %dl, %r12b movq %r13, 32(%rsp) cfi_offset_rel_rsp (13, 32) movl %ecx, %r13d movq %r14, 24(%rsp) cfi_offset_rel_rsp (14, 24) movl %eax, %r14d movq %r15, 16(%rsp) cfi_offset_rel_rsp (15, 16) cfi_remember_state .LBL_1_6: btl %r14d, %r13d jc .LBL_1_12 .LBL_1_7: lea 1(%r14), %esi btl %esi, %r13d jc .LBL_1_10 .LBL_1_8: incb %r12b addl $2, %r14d cmpb $16, %r12b jb .LBL_1_6 movq 8(%rsp), %rsi movq (%rsp), %rdi movq 40(%rsp), %r12 cfi_restore (%r12) movq 32(%rsp), %r13 cfi_restore (%r13) movq 24(%rsp), %r14 cfi_restore (%r14) movq 16(%rsp), %r15 cfi_restore (%r15) vmovups 192(%rsp), %ymm1 jmp .LBL_1_2 .LBL_1_10: cfi_restore_state movzbl %r12b, %r15d vmovss 68(%rsp,%r15,8), %xmm0 vmovss 132(%rsp,%r15,8), %xmm1 vzeroupper call powf@PLT vmovss %xmm0, 196(%rsp,%r15,8) jmp .LBL_1_8 .LBL_1_12: movzbl %r12b, %r15d vmovss 64(%rsp,%r15,8), %xmm0 vmovss 128(%rsp,%r15,8), %xmm1 vzeroupper call powf@PLT vmovss %xmm0, 192(%rsp,%r15,8) jmp .LBL_1_7 END(_ZGVdN8vv_powf_avx2) .section .rodata, "a" __VPACK_ODD_ind.6357.0.1: .long 1 .long 3 .long 5 .long 7 .long 0 .long 0 .long 0 .long 0 .space 32, 0x00 __VPACK_ODD_ind.6358.0.1: .long 1 .long 3 .long 5 .long 7 .long 0 .long 0 .long 0 .long 0