/* Implement powl for x86 using extra-precision log. Copyright (C) 2012-2018 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include /* High parts and low parts of -log (k/16), for integer k from 12 to 24. */ static const long double powl_log_table[] = { 0x4.9a58844d36e49e1p-4L, -0x1.0522624fd558f574p-68L, 0x3.527da7915b3c6de4p-4L, 0x1.7d4ef4b901b99b9ep-68L, 0x2.22f1d044fc8f7bc8p-4L, -0x1.8e97c071a42fc388p-68L, 0x1.08598b59e3a0688ap-4L, 0x3.fd9bf503372c12fcp-72L, -0x0p+0L, 0x0p+0L, -0xf.85186008b15330cp-8L, 0x1.9b47488a6687672cp-72L, -0x1.e27076e2af2e5e9ep-4L, -0xa.87ffe1fe9e155dcp-72L, -0x2.bfe60e14f27a791p-4L, 0x1.83bebf1bdb88a032p-68L, -0x3.91fef8f353443584p-4L, -0xb.b03de5ff734495cp-72L, -0x4.59d72aeae98380e8p-4L, 0xc.e0aa3be4747dc1p-72L, -0x5.1862f08717b09f4p-4L, -0x2.decdeccf1cd10578p-68L, -0x5.ce75fdaef401a738p-4L, -0x9.314feb4fbde5aaep-72L, -0x6.7cc8fb2fe612fcbp-4L, 0x2.5ca2642feb779f98p-68L, }; /* High 32 bits of log2 (e), and remainder rounded to 64 bits. */ static const long double log2e_hi = 0x1.71547652p+0L; static const long double log2e_lo = 0xb.82fe1777d0ffda1p-36L; /* Given a number with high part HI and low part LO, add the number X to it and store the result in *RHI and *RLO. It is given that either |X| < |0.7 * HI|, or HI == LO == 0, and that the values are small enough that no overflow occurs. The result does not need to be exact to 128 bits; 78-bit accuracy of the final accumulated result suffices. */ static inline void acc_split (long double *rhi, long double *rlo, long double hi, long double lo, long double x) { long double thi = hi + x; long double tlo = (hi - thi) + x + lo; *rhi = thi + tlo; *rlo = (thi - *rhi) + tlo; } extern long double __powl_helper (long double x, long double y); libm_hidden_proto (__powl_helper) /* Given X a value that is finite and nonzero, or a NaN, and Y a finite nonzero value with 0x1p-79 <= |Y| <= 0x1p78, compute X to the power Y. */ long double __powl_helper (long double x, long double y) { if (isnan (x)) return __ieee754_expl (y * __ieee754_logl (x)); bool negate; if (x < 0) { long double absy = fabsl (y); if (absy >= 0x1p64L) negate = false; else { unsigned long long yll = absy; if (yll != absy) return __ieee754_expl (y * __ieee754_logl (x)); negate = (yll & 1) != 0; } x = fabsl (x); } else negate = false; /* We need to compute Y * log2 (X) to at least 64 bits after the point for normal results (that is, to at least 78 bits precision). */ int x_int_exponent; long double x_frac; x_frac = __frexpl (x, &x_int_exponent); if (x_frac <= 0x0.aaaaaaaaaaaaaaaap0L) /* 2.0L / 3.0L, rounded down */ { x_frac *= 2.0; x_int_exponent--; } long double log_x_frac_hi, log_x_frac_lo; /* Determine an initial approximation to log (X_FRAC) using POWL_LOG_TABLE, and multiply by a value K/16 to reduce to an interval (24/25, 26/25). */ int k = (int) ((16.0L / x_frac) + 0.5L); log_x_frac_hi = powl_log_table[2 * k - 24]; log_x_frac_lo = powl_log_table[2 * k - 23]; long double x_frac_low; if (k == 16) x_frac_low = 0.0L; else { /* Mask off low 5 bits of X_FRAC so the multiplication by K/16 is exact. These bits are small enough that they can be corrected for by adding log2 (e) * X_FRAC_LOW to the final result. */ int32_t se; uint32_t i0, i1; GET_LDOUBLE_WORDS (se, i0, i1, x_frac); x_frac_low = x_frac; i1 &= 0xffffffe0; SET_LDOUBLE_WORDS (x_frac, se, i0, i1); x_frac_low -= x_frac; x_frac_low /= x_frac; x_frac *= k / 16.0L; } /* Now compute log (X_FRAC) for X_FRAC in (24/25, 26/25). Separate W = X_FRAC - 1 into high 16 bits and remaining bits, so that multiplications for low-order power series terms are exact. The remaining bits are small enough that adding a 64-bit value of log2 (1 + W_LO / (1 + W_HI)) will be a sufficient correction for them. */ long double w = x_frac - 1; long double w_hi, w_lo; int32_t se; uint32_t i0, i1; GET_LDOUBLE_WORDS (se, i0, i1, w); i0 &= 0xffff0000; i1 = 0; SET_LDOUBLE_WORDS (w_hi, se, i0, i1); w_lo = w - w_hi; long double wp = w_hi; acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo, wp); wp *= -w_hi; acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo, wp / 2.0L); wp *= -w_hi; acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo, wp * 0x0.5555p0L); /* -W_HI**3 / 3, high part. */ acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo, wp * 0x0.5555555555555555p-16L); /* -W_HI**3 / 3, low part. */ wp *= -w_hi; acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo, wp / 4.0L); /* Subsequent terms are small enough that they only need be computed to 64 bits. */ for (int i = 5; i <= 17; i++) { wp *= -w_hi; acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo, wp / i); } /* Convert LOG_X_FRAC_HI + LOG_X_FRAC_LO to a base-2 logarithm. */ long double log2_x_frac_hi, log2_x_frac_lo; long double log_x_frac_hi32, log_x_frac_lo64; GET_LDOUBLE_WORDS (se, i0, i1, log_x_frac_hi); i1 = 0; SET_LDOUBLE_WORDS (log_x_frac_hi32, se, i0, i1); log_x_frac_lo64 = (log_x_frac_hi - log_x_frac_hi32) + log_x_frac_lo; long double log2_x_frac_hi1 = log_x_frac_hi32 * log2e_hi; long double log2_x_frac_lo1 = log_x_frac_lo64 * log2e_hi + log_x_frac_hi * log2e_lo; log2_x_frac_hi = log2_x_frac_hi1 + log2_x_frac_lo1; log2_x_frac_lo = (log2_x_frac_hi1 - log2_x_frac_hi) + log2_x_frac_lo1; /* Correct for the masking off of W_LO. */ long double log2_1p_w_lo; asm ("fyl2xp1" : "=t" (log2_1p_w_lo) : "0" (w_lo / (1.0L + w_hi)), "u" (1.0L) : "st(1)"); acc_split (&log2_x_frac_hi, &log2_x_frac_lo, log2_x_frac_hi, log2_x_frac_lo, log2_1p_w_lo); /* Correct for the masking off of X_FRAC_LOW. */ acc_split (&log2_x_frac_hi, &log2_x_frac_lo, log2_x_frac_hi, log2_x_frac_lo, x_frac_low * M_LOG2El); /* Add the integer and fractional parts of the base-2 logarithm. */ long double log2_x_hi, log2_x_lo; log2_x_hi = x_int_exponent + log2_x_frac_hi; log2_x_lo = ((x_int_exponent - log2_x_hi) + log2_x_frac_hi) + log2_x_frac_lo; /* Compute the base-2 logarithm of the result. */ long double log2_res_hi, log2_res_lo; long double log2_x_hi32, log2_x_lo64; GET_LDOUBLE_WORDS (se, i0, i1, log2_x_hi); i1 = 0; SET_LDOUBLE_WORDS (log2_x_hi32, se, i0, i1); log2_x_lo64 = (log2_x_hi - log2_x_hi32) + log2_x_lo; long double y_hi32, y_lo32; GET_LDOUBLE_WORDS (se, i0, i1, y); i1 = 0; SET_LDOUBLE_WORDS (y_hi32, se, i0, i1); y_lo32 = y - y_hi32; log2_res_hi = log2_x_hi32 * y_hi32; log2_res_lo = log2_x_hi32 * y_lo32 + log2_x_lo64 * y; /* Split the base-2 logarithm of the result into integer and fractional parts. */ long double log2_res_int = __roundl (log2_res_hi); long double log2_res_frac = log2_res_hi - log2_res_int + log2_res_lo; /* If the integer part is very large, the computed fractional part may be outside the valid range for f2xm1. */ if (fabsl (log2_res_int) > 16500) log2_res_frac = 0; /* Compute the final result. */ long double res; asm ("f2xm1" : "=t" (res) : "0" (log2_res_frac)); res += 1.0L; if (negate) res = -res; asm ("fscale" : "=t" (res) : "0" (res), "u" (log2_res_int)); math_check_force_underflow (res); return res; } libm_hidden_def (__powl_helper)