/* Copyright (C) 2012-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library. If not, see . */ #ifdef ANDROID_CHANGES # include "machine/asm.h" # include "machine/regdef.h" # define USE_MEMMOVE_FOR_OVERLAP # define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD_STREAMED # define PREFETCH_STORE_HINT PREFETCH_HINT_PREPAREFORSTORE #elif _LIBC # include # include # include # define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD_STREAMED # define PREFETCH_STORE_HINT PREFETCH_HINT_PREPAREFORSTORE #elif defined _COMPILING_NEWLIB # include "machine/asm.h" # include "machine/regdef.h" # define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD_STREAMED # define PREFETCH_STORE_HINT PREFETCH_HINT_PREPAREFORSTORE #else # include # include #endif #if (_MIPS_ISA == _MIPS_ISA_MIPS4) || (_MIPS_ISA == _MIPS_ISA_MIPS5) || \ (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64) # ifndef DISABLE_PREFETCH # define USE_PREFETCH # endif #endif #if defined(_MIPS_SIM) && ((_MIPS_SIM == _ABI64) || (_MIPS_SIM == _ABIN32)) # ifndef DISABLE_DOUBLE # define USE_DOUBLE # endif #endif /* Some asm.h files do not have the L macro definition. */ #ifndef L # if _MIPS_SIM == _ABIO32 # define L(label) $L ## label # else # define L(label) .L ## label # endif #endif /* Some asm.h files do not have the PTR_ADDIU macro definition. */ #ifndef PTR_ADDIU # ifdef USE_DOUBLE # define PTR_ADDIU daddiu # else # define PTR_ADDIU addiu # endif #endif /* Some asm.h files do not have the PTR_SRA macro definition. */ #ifndef PTR_SRA # ifdef USE_DOUBLE # define PTR_SRA dsra # else # define PTR_SRA sra # endif #endif /* New R6 instructions that may not be in asm.h. */ #ifndef PTR_LSA # if _MIPS_SIM == _ABI64 # define PTR_LSA dlsa # else # define PTR_LSA lsa # endif #endif /* * Using PREFETCH_HINT_LOAD_STREAMED instead of PREFETCH_LOAD on load * prefetches appears to offer a slight preformance advantage. * * Using PREFETCH_HINT_PREPAREFORSTORE instead of PREFETCH_STORE * or PREFETCH_STORE_STREAMED offers a large performance advantage * but PREPAREFORSTORE has some special restrictions to consider. * * Prefetch with the 'prepare for store' hint does not copy a memory * location into the cache, it just allocates a cache line and zeros * it out. This means that if you do not write to the entire cache * line before writing it out to memory some data will get zero'ed out * when the cache line is written back to memory and data will be lost. * * Also if you are using this memcpy to copy overlapping buffers it may * not behave correctly when using the 'prepare for store' hint. If you * use the 'prepare for store' prefetch on a memory area that is in the * memcpy source (as well as the memcpy destination), then you will get * some data zero'ed out before you have a chance to read it and data will * be lost. * * If you are going to use this memcpy routine with the 'prepare for store' * prefetch you may want to set USE_MEMMOVE_FOR_OVERLAP in order to avoid * the problem of running memcpy on overlapping buffers. * * There are ifdef'ed sections of this memcpy to make sure that it does not * do prefetches on cache lines that are not going to be completely written. * This code is only needed and only used when PREFETCH_STORE_HINT is set to * PREFETCH_HINT_PREPAREFORSTORE. This code assumes that cache lines are * 32 bytes and if the cache line is larger it will not work correctly. */ #ifdef USE_PREFETCH # define PREFETCH_HINT_LOAD 0 # define PREFETCH_HINT_STORE 1 # define PREFETCH_HINT_LOAD_STREAMED 4 # define PREFETCH_HINT_STORE_STREAMED 5 # define PREFETCH_HINT_LOAD_RETAINED 6 # define PREFETCH_HINT_STORE_RETAINED 7 # define PREFETCH_HINT_WRITEBACK_INVAL 25 # define PREFETCH_HINT_PREPAREFORSTORE 30 /* * If we have not picked out what hints to use at this point use the * standard load and store prefetch hints. */ # ifndef PREFETCH_STORE_HINT # define PREFETCH_STORE_HINT PREFETCH_HINT_STORE # endif # ifndef PREFETCH_LOAD_HINT # define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD # endif /* * We double everything when USE_DOUBLE is true so we do 2 prefetches to * get 64 bytes in that case. The assumption is that each individual * prefetch brings in 32 bytes. */ # ifdef USE_DOUBLE # define PREFETCH_CHUNK 64 # define PREFETCH_FOR_LOAD(chunk, reg) \ pref PREFETCH_LOAD_HINT, (chunk)*64(reg); \ pref PREFETCH_LOAD_HINT, ((chunk)*64)+32(reg) # define PREFETCH_FOR_STORE(chunk, reg) \ pref PREFETCH_STORE_HINT, (chunk)*64(reg); \ pref PREFETCH_STORE_HINT, ((chunk)*64)+32(reg) # else # define PREFETCH_CHUNK 32 # define PREFETCH_FOR_LOAD(chunk, reg) \ pref PREFETCH_LOAD_HINT, (chunk)*32(reg) # define PREFETCH_FOR_STORE(chunk, reg) \ pref PREFETCH_STORE_HINT, (chunk)*32(reg) # endif /* MAX_PREFETCH_SIZE is the maximum size of a prefetch, it must not be less * than PREFETCH_CHUNK, the assumed size of each prefetch. If the real size * of a prefetch is greater than MAX_PREFETCH_SIZE and the PREPAREFORSTORE * hint is used, the code will not work correctly. If PREPAREFORSTORE is not * used then MAX_PREFETCH_SIZE does not matter. */ # define MAX_PREFETCH_SIZE 128 /* PREFETCH_LIMIT is set based on the fact that we never use an offset greater * than 5 on a STORE prefetch and that a single prefetch can never be larger * than MAX_PREFETCH_SIZE. We add the extra 32 when USE_DOUBLE is set because * we actually do two prefetches in that case, one 32 bytes after the other. */ # ifdef USE_DOUBLE # define PREFETCH_LIMIT (5 * PREFETCH_CHUNK) + 32 + MAX_PREFETCH_SIZE # else # define PREFETCH_LIMIT (5 * PREFETCH_CHUNK) + MAX_PREFETCH_SIZE # endif # if (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) \ && ((PREFETCH_CHUNK * 4) < MAX_PREFETCH_SIZE) /* We cannot handle this because the initial prefetches may fetch bytes that * are before the buffer being copied. We start copies with an offset * of 4 so avoid this situation when using PREPAREFORSTORE. */ #error "PREFETCH_CHUNK is too large and/or MAX_PREFETCH_SIZE is too small." # endif #else /* USE_PREFETCH not defined */ # define PREFETCH_FOR_LOAD(offset, reg) # define PREFETCH_FOR_STORE(offset, reg) #endif #if __mips_isa_rev > 5 # if (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) # undef PREFETCH_STORE_HINT # define PREFETCH_STORE_HINT PREFETCH_HINT_STORE_STREAMED # endif # define R6_CODE #endif /* Allow the routine to be named something else if desired. */ #ifndef MEMCPY_NAME # define MEMCPY_NAME memcpy #endif /* We use these 32/64 bit registers as temporaries to do the copying. */ #define REG0 t0 #define REG1 t1 #define REG2 t2 #define REG3 t3 #if defined(_MIPS_SIM) && ((_MIPS_SIM == _ABIO32) || (_MIPS_SIM == _ABIO64)) # define REG4 t4 # define REG5 t5 # define REG6 t6 # define REG7 t7 #else # define REG4 ta0 # define REG5 ta1 # define REG6 ta2 # define REG7 ta3 #endif /* We load/store 64 bits at a time when USE_DOUBLE is true. * The C_ prefix stands for CHUNK and is used to avoid macro name * conflicts with system header files. */ #ifdef USE_DOUBLE # define C_ST sd # define C_LD ld # ifdef __MIPSEB # define C_LDHI ldl /* high part is left in big-endian */ # define C_STHI sdl /* high part is left in big-endian */ # define C_LDLO ldr /* low part is right in big-endian */ # define C_STLO sdr /* low part is right in big-endian */ # else # define C_LDHI ldr /* high part is right in little-endian */ # define C_STHI sdr /* high part is right in little-endian */ # define C_LDLO ldl /* low part is left in little-endian */ # define C_STLO sdl /* low part is left in little-endian */ # endif # define C_ALIGN dalign /* r6 align instruction */ #else # define C_ST sw # define C_LD lw # ifdef __MIPSEB # define C_LDHI lwl /* high part is left in big-endian */ # define C_STHI swl /* high part is left in big-endian */ # define C_LDLO lwr /* low part is right in big-endian */ # define C_STLO swr /* low part is right in big-endian */ # else # define C_LDHI lwr /* high part is right in little-endian */ # define C_STHI swr /* high part is right in little-endian */ # define C_LDLO lwl /* low part is left in little-endian */ # define C_STLO swl /* low part is left in little-endian */ # endif # define C_ALIGN align /* r6 align instruction */ #endif /* Bookkeeping values for 32 vs. 64 bit mode. */ #ifdef USE_DOUBLE # define NSIZE 8 # define NSIZEMASK 0x3f # define NSIZEDMASK 0x7f #else # define NSIZE 4 # define NSIZEMASK 0x1f # define NSIZEDMASK 0x3f #endif #define UNIT(unit) ((unit)*NSIZE) #define UNITM1(unit) (((unit)*NSIZE)-1) #ifdef ANDROID_CHANGES LEAF(MEMCPY_NAME, 0) #else LEAF(MEMCPY_NAME) #endif .set nomips16 .set noreorder /* * Below we handle the case where memcpy is called with overlapping src and dst. * Although memcpy is not required to handle this case, some parts of Android * like Skia rely on such usage. We call memmove to handle such cases. */ #ifdef USE_MEMMOVE_FOR_OVERLAP PTR_SUBU t0,a0,a1 PTR_SRA t2,t0,31 xor t1,t0,t2 PTR_SUBU t0,t1,t2 sltu t2,t0,a2 beq t2,zero,L(memcpy) la t9,memmove jr t9 nop L(memcpy): #endif /* * If the size is less than 2*NSIZE (8 or 16), go to L(lastb). Regardless of * size, copy dst pointer to v0 for the return value. */ slti t2,a2,(2 * NSIZE) bne t2,zero,L(lasts) #if defined(RETURN_FIRST_PREFETCH) || defined(RETURN_LAST_PREFETCH) move v0,zero #else move v0,a0 #endif #ifndef R6_CODE /* * If src and dst have different alignments, go to L(unaligned), if they * have the same alignment (but are not actually aligned) do a partial * load/store to make them aligned. If they are both already aligned * we can start copying at L(aligned). */ xor t8,a1,a0 andi t8,t8,(NSIZE-1) /* t8 is a0/a1 word-displacement */ bne t8,zero,L(unaligned) PTR_SUBU a3, zero, a0 andi a3,a3,(NSIZE-1) /* copy a3 bytes to align a0/a1 */ beq a3,zero,L(aligned) /* if a3=0, it is already aligned */ PTR_SUBU a2,a2,a3 /* a2 is the remining bytes count */ C_LDHI t8,0(a1) PTR_ADDU a1,a1,a3 C_STHI t8,0(a0) PTR_ADDU a0,a0,a3 #else /* R6_CODE */ /* * Align the destination and hope that the source gets aligned too. If it * doesn't we jump to L(r6_unaligned*) to do unaligned copies using the r6 * align instruction. */ andi t8,a0,7 lapc t9,L(atable) PTR_LSA t9,t8,t9,2 jrc t9 L(atable): bc L(lb0) bc L(lb7) bc L(lb6) bc L(lb5) bc L(lb4) bc L(lb3) bc L(lb2) bc L(lb1) L(lb7): lb a3, 6(a1) sb a3, 6(a0) L(lb6): lb a3, 5(a1) sb a3, 5(a0) L(lb5): lb a3, 4(a1) sb a3, 4(a0) L(lb4): lb a3, 3(a1) sb a3, 3(a0) L(lb3): lb a3, 2(a1) sb a3, 2(a0) L(lb2): lb a3, 1(a1) sb a3, 1(a0) L(lb1): lb a3, 0(a1) sb a3, 0(a0) li t9,8 subu t8,t9,t8 PTR_SUBU a2,a2,t8 PTR_ADDU a0,a0,t8 PTR_ADDU a1,a1,t8 L(lb0): andi t8,a1,(NSIZE-1) lapc t9,L(jtable) PTR_LSA t9,t8,t9,2 jrc t9 L(jtable): bc L(aligned) bc L(r6_unaligned1) bc L(r6_unaligned2) bc L(r6_unaligned3) # ifdef USE_DOUBLE bc L(r6_unaligned4) bc L(r6_unaligned5) bc L(r6_unaligned6) bc L(r6_unaligned7) # endif #endif /* R6_CODE */ L(aligned): /* * Now dst/src are both aligned to (word or double word) aligned addresses * Set a2 to count how many bytes we have to copy after all the 64/128 byte * chunks are copied and a3 to the dst pointer after all the 64/128 byte * chunks have been copied. We will loop, incrementing a0 and a1 until a0 * equals a3. */ andi t8,a2,NSIZEDMASK /* any whole 64-byte/128-byte chunks? */ beq a2,t8,L(chkw) /* if a2==t8, no 64-byte/128-byte chunks */ PTR_SUBU a3,a2,t8 /* subtract from a2 the reminder */ PTR_ADDU a3,a0,a3 /* Now a3 is the final dst after loop */ /* When in the loop we may prefetch with the 'prepare to store' hint, * in this case the a0+x should not be past the "t0-32" address. This * means: for x=128 the last "safe" a0 address is "t0-160". Alternatively, * for x=64 the last "safe" a0 address is "t0-96" In the current version we * will use "prefetch hint,128(a0)", so "t0-160" is the limit. */ #if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) PTR_ADDU t0,a0,a2 /* t0 is the "past the end" address */ PTR_SUBU t9,t0,PREFETCH_LIMIT /* t9 is the "last safe pref" address */ #endif PREFETCH_FOR_LOAD (0, a1) PREFETCH_FOR_LOAD (1, a1) PREFETCH_FOR_LOAD (2, a1) PREFETCH_FOR_LOAD (3, a1) #if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT != PREFETCH_HINT_PREPAREFORSTORE) PREFETCH_FOR_STORE (1, a0) PREFETCH_FOR_STORE (2, a0) PREFETCH_FOR_STORE (3, a0) #endif #if defined(RETURN_FIRST_PREFETCH) && defined(USE_PREFETCH) # if PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE sltu v1,t9,a0 bgtz v1,L(skip_set) nop PTR_ADDIU v0,a0,(PREFETCH_CHUNK*4) L(skip_set): # else PTR_ADDIU v0,a0,(PREFETCH_CHUNK*1) # endif #endif #if defined(RETURN_LAST_PREFETCH) && defined(USE_PREFETCH) \ && (PREFETCH_STORE_HINT != PREFETCH_HINT_PREPAREFORSTORE) PTR_ADDIU v0,a0,(PREFETCH_CHUNK*3) # ifdef USE_DOUBLE PTR_ADDIU v0,v0,32 # endif #endif L(loop16w): C_LD t0,UNIT(0)(a1) #if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) sltu v1,t9,a0 /* If a0 > t9 don't use next prefetch */ bgtz v1,L(skip_pref) #endif C_LD t1,UNIT(1)(a1) #ifdef R6_CODE PREFETCH_FOR_STORE (2, a0) #else PREFETCH_FOR_STORE (4, a0) PREFETCH_FOR_STORE (5, a0) #endif #if defined(RETURN_LAST_PREFETCH) && defined(USE_PREFETCH) PTR_ADDIU v0,a0,(PREFETCH_CHUNK*5) # ifdef USE_DOUBLE PTR_ADDIU v0,v0,32 # endif #endif L(skip_pref): C_LD REG2,UNIT(2)(a1) C_LD REG3,UNIT(3)(a1) C_LD REG4,UNIT(4)(a1) C_LD REG5,UNIT(5)(a1) C_LD REG6,UNIT(6)(a1) C_LD REG7,UNIT(7)(a1) #ifdef R6_CODE PREFETCH_FOR_LOAD (3, a1) #else PREFETCH_FOR_LOAD (4, a1) #endif C_ST t0,UNIT(0)(a0) C_ST t1,UNIT(1)(a0) C_ST REG2,UNIT(2)(a0) C_ST REG3,UNIT(3)(a0) C_ST REG4,UNIT(4)(a0) C_ST REG5,UNIT(5)(a0) C_ST REG6,UNIT(6)(a0) C_ST REG7,UNIT(7)(a0) C_LD t0,UNIT(8)(a1) C_LD t1,UNIT(9)(a1) C_LD REG2,UNIT(10)(a1) C_LD REG3,UNIT(11)(a1) C_LD REG4,UNIT(12)(a1) C_LD REG5,UNIT(13)(a1) C_LD REG6,UNIT(14)(a1) C_LD REG7,UNIT(15)(a1) #ifndef R6_CODE PREFETCH_FOR_LOAD (5, a1) #endif C_ST t0,UNIT(8)(a0) C_ST t1,UNIT(9)(a0) C_ST REG2,UNIT(10)(a0) C_ST REG3,UNIT(11)(a0) C_ST REG4,UNIT(12)(a0) C_ST REG5,UNIT(13)(a0) C_ST REG6,UNIT(14)(a0) C_ST REG7,UNIT(15)(a0) PTR_ADDIU a0,a0,UNIT(16) /* adding 64/128 to dest */ bne a0,a3,L(loop16w) PTR_ADDIU a1,a1,UNIT(16) /* adding 64/128 to src */ move a2,t8 /* Here we have src and dest word-aligned but less than 64-bytes or * 128 bytes to go. Check for a 32(64) byte chunk and copy if if there * is one. Otherwise jump down to L(chk1w) to handle the tail end of * the copy. */ L(chkw): PREFETCH_FOR_LOAD (0, a1) andi t8,a2,NSIZEMASK /* Is there a 32-byte/64-byte chunk. */ /* The t8 is the reminder count past 32-bytes */ beq a2,t8,L(chk1w) /* When a2=t8, no 32-byte chunk */ nop C_LD t0,UNIT(0)(a1) C_LD t1,UNIT(1)(a1) C_LD REG2,UNIT(2)(a1) C_LD REG3,UNIT(3)(a1) C_LD REG4,UNIT(4)(a1) C_LD REG5,UNIT(5)(a1) C_LD REG6,UNIT(6)(a1) C_LD REG7,UNIT(7)(a1) PTR_ADDIU a1,a1,UNIT(8) C_ST t0,UNIT(0)(a0) C_ST t1,UNIT(1)(a0) C_ST REG2,UNIT(2)(a0) C_ST REG3,UNIT(3)(a0) C_ST REG4,UNIT(4)(a0) C_ST REG5,UNIT(5)(a0) C_ST REG6,UNIT(6)(a0) C_ST REG7,UNIT(7)(a0) PTR_ADDIU a0,a0,UNIT(8) /* * Here we have less than 32(64) bytes to copy. Set up for a loop to * copy one word (or double word) at a time. Set a2 to count how many * bytes we have to copy after all the word (or double word) chunks are * copied and a3 to the dst pointer after all the (d)word chunks have * been copied. We will loop, incrementing a0 and a1 until a0 equals a3. */ L(chk1w): andi a2,t8,(NSIZE-1) /* a2 is the reminder past one (d)word chunks */ beq a2,t8,L(lastw) PTR_SUBU a3,t8,a2 /* a3 is count of bytes in one (d)word chunks */ PTR_ADDU a3,a0,a3 /* a3 is the dst address after loop */ /* copying in words (4-byte or 8-byte chunks) */ L(wordCopy_loop): C_LD REG3,UNIT(0)(a1) PTR_ADDIU a0,a0,UNIT(1) PTR_ADDIU a1,a1,UNIT(1) bne a0,a3,L(wordCopy_loop) C_ST REG3,UNIT(-1)(a0) /* If we have been copying double words, see if we can copy a single word before doing byte copies. We can have, at most, one word to copy. */ L(lastw): #ifdef USE_DOUBLE andi t8,a2,3 /* a2 is the remainder past 4 byte chunks. */ beq t8,a2,L(lastb) move a2,t8 lw REG3,0(a1) sw REG3,0(a0) PTR_ADDIU a0,a0,4 PTR_ADDIU a1,a1,4 #endif /* Copy the last 8 (or 16) bytes */ L(lastb): blez a2,L(leave) PTR_ADDU a3,a0,a2 /* a3 is the last dst address */ L(lastbloop): lb v1,0(a1) PTR_ADDIU a0,a0,1 PTR_ADDIU a1,a1,1 bne a0,a3,L(lastbloop) sb v1,-1(a0) L(leave): j ra nop /* We jump here with a memcpy of less than 8 or 16 bytes, depending on whether or not USE_DOUBLE is defined. Instead of just doing byte copies, check the alignment and size and use lw/sw if possible. Otherwise, do byte copies. */ L(lasts): andi t8,a2,3 beq t8,a2,L(lastb) andi t9,a0,3 bne t9,zero,L(lastb) andi t9,a1,3 bne t9,zero,L(lastb) PTR_SUBU a3,a2,t8 PTR_ADDU a3,a0,a3 L(wcopy_loop): lw REG3,0(a1) PTR_ADDIU a0,a0,4 PTR_ADDIU a1,a1,4 bne a0,a3,L(wcopy_loop) sw REG3,-4(a0) b L(lastb) move a2,t8 #ifndef R6_CODE /* * UNALIGNED case, got here with a3 = "negu a0" * This code is nearly identical to the aligned code above * but only the destination (not the source) gets aligned * so we need to do partial loads of the source followed * by normal stores to the destination (once we have aligned * the destination). */ L(unaligned): andi a3,a3,(NSIZE-1) /* copy a3 bytes to align a0/a1 */ beqz a3,L(ua_chk16w) /* if a3=0, it is already aligned */ PTR_SUBU a2,a2,a3 /* a2 is the remining bytes count */ C_LDHI v1,UNIT(0)(a1) C_LDLO v1,UNITM1(1)(a1) PTR_ADDU a1,a1,a3 C_STHI v1,UNIT(0)(a0) PTR_ADDU a0,a0,a3 /* * Now the destination (but not the source) is aligned * Set a2 to count how many bytes we have to copy after all the 64/128 byte * chunks are copied and a3 to the dst pointer after all the 64/128 byte * chunks have been copied. We will loop, incrementing a0 and a1 until a0 * equals a3. */ L(ua_chk16w): andi t8,a2,NSIZEDMASK /* any whole 64-byte/128-byte chunks? */ beq a2,t8,L(ua_chkw) /* if a2==t8, no 64-byte/128-byte chunks */ PTR_SUBU a3,a2,t8 /* subtract from a2 the reminder */ PTR_ADDU a3,a0,a3 /* Now a3 is the final dst after loop */ # if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) PTR_ADDU t0,a0,a2 /* t0 is the "past the end" address */ PTR_SUBU t9,t0,PREFETCH_LIMIT /* t9 is the "last safe pref" address */ # endif PREFETCH_FOR_LOAD (0, a1) PREFETCH_FOR_LOAD (1, a1) PREFETCH_FOR_LOAD (2, a1) # if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT != PREFETCH_HINT_PREPAREFORSTORE) PREFETCH_FOR_STORE (1, a0) PREFETCH_FOR_STORE (2, a0) PREFETCH_FOR_STORE (3, a0) # endif # if defined(RETURN_FIRST_PREFETCH) && defined(USE_PREFETCH) # if (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) sltu v1,t9,a0 bgtz v1,L(ua_skip_set) nop PTR_ADDIU v0,a0,(PREFETCH_CHUNK*4) L(ua_skip_set): # else PTR_ADDIU v0,a0,(PREFETCH_CHUNK*1) # endif # endif L(ua_loop16w): PREFETCH_FOR_LOAD (3, a1) C_LDHI t0,UNIT(0)(a1) C_LDHI t1,UNIT(1)(a1) C_LDHI REG2,UNIT(2)(a1) # if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) sltu v1,t9,a0 bgtz v1,L(ua_skip_pref) # endif C_LDHI REG3,UNIT(3)(a1) PREFETCH_FOR_STORE (4, a0) PREFETCH_FOR_STORE (5, a0) L(ua_skip_pref): C_LDHI REG4,UNIT(4)(a1) C_LDHI REG5,UNIT(5)(a1) C_LDHI REG6,UNIT(6)(a1) C_LDHI REG7,UNIT(7)(a1) C_LDLO t0,UNITM1(1)(a1) C_LDLO t1,UNITM1(2)(a1) C_LDLO REG2,UNITM1(3)(a1) C_LDLO REG3,UNITM1(4)(a1) C_LDLO REG4,UNITM1(5)(a1) C_LDLO REG5,UNITM1(6)(a1) C_LDLO REG6,UNITM1(7)(a1) C_LDLO REG7,UNITM1(8)(a1) PREFETCH_FOR_LOAD (4, a1) C_ST t0,UNIT(0)(a0) C_ST t1,UNIT(1)(a0) C_ST REG2,UNIT(2)(a0) C_ST REG3,UNIT(3)(a0) C_ST REG4,UNIT(4)(a0) C_ST REG5,UNIT(5)(a0) C_ST REG6,UNIT(6)(a0) C_ST REG7,UNIT(7)(a0) C_LDHI t0,UNIT(8)(a1) C_LDHI t1,UNIT(9)(a1) C_LDHI REG2,UNIT(10)(a1) C_LDHI REG3,UNIT(11)(a1) C_LDHI REG4,UNIT(12)(a1) C_LDHI REG5,UNIT(13)(a1) C_LDHI REG6,UNIT(14)(a1) C_LDHI REG7,UNIT(15)(a1) C_LDLO t0,UNITM1(9)(a1) C_LDLO t1,UNITM1(10)(a1) C_LDLO REG2,UNITM1(11)(a1) C_LDLO REG3,UNITM1(12)(a1) C_LDLO REG4,UNITM1(13)(a1) C_LDLO REG5,UNITM1(14)(a1) C_LDLO REG6,UNITM1(15)(a1) C_LDLO REG7,UNITM1(16)(a1) PREFETCH_FOR_LOAD (5, a1) C_ST t0,UNIT(8)(a0) C_ST t1,UNIT(9)(a0) C_ST REG2,UNIT(10)(a0) C_ST REG3,UNIT(11)(a0) C_ST REG4,UNIT(12)(a0) C_ST REG5,UNIT(13)(a0) C_ST REG6,UNIT(14)(a0) C_ST REG7,UNIT(15)(a0) PTR_ADDIU a0,a0,UNIT(16) /* adding 64/128 to dest */ bne a0,a3,L(ua_loop16w) PTR_ADDIU a1,a1,UNIT(16) /* adding 64/128 to src */ move a2,t8 /* Here we have src and dest word-aligned but less than 64-bytes or * 128 bytes to go. Check for a 32(64) byte chunk and copy if if there * is one. Otherwise jump down to L(ua_chk1w) to handle the tail end of * the copy. */ L(ua_chkw): PREFETCH_FOR_LOAD (0, a1) andi t8,a2,NSIZEMASK /* Is there a 32-byte/64-byte chunk. */ /* t8 is the reminder count past 32-bytes */ beq a2,t8,L(ua_chk1w) /* When a2=t8, no 32-byte chunk */ nop C_LDHI t0,UNIT(0)(a1) C_LDHI t1,UNIT(1)(a1) C_LDHI REG2,UNIT(2)(a1) C_LDHI REG3,UNIT(3)(a1) C_LDHI REG4,UNIT(4)(a1) C_LDHI REG5,UNIT(5)(a1) C_LDHI REG6,UNIT(6)(a1) C_LDHI REG7,UNIT(7)(a1) C_LDLO t0,UNITM1(1)(a1) C_LDLO t1,UNITM1(2)(a1) C_LDLO REG2,UNITM1(3)(a1) C_LDLO REG3,UNITM1(4)(a1) C_LDLO REG4,UNITM1(5)(a1) C_LDLO REG5,UNITM1(6)(a1) C_LDLO REG6,UNITM1(7)(a1) C_LDLO REG7,UNITM1(8)(a1) PTR_ADDIU a1,a1,UNIT(8) C_ST t0,UNIT(0)(a0) C_ST t1,UNIT(1)(a0) C_ST REG2,UNIT(2)(a0) C_ST REG3,UNIT(3)(a0) C_ST REG4,UNIT(4)(a0) C_ST REG5,UNIT(5)(a0) C_ST REG6,UNIT(6)(a0) C_ST REG7,UNIT(7)(a0) PTR_ADDIU a0,a0,UNIT(8) /* * Here we have less than 32(64) bytes to copy. Set up for a loop to * copy one word (or double word) at a time. */ L(ua_chk1w): andi a2,t8,(NSIZE-1) /* a2 is the reminder past one (d)word chunks */ beq a2,t8,L(ua_smallCopy) PTR_SUBU a3,t8,a2 /* a3 is count of bytes in one (d)word chunks */ PTR_ADDU a3,a0,a3 /* a3 is the dst address after loop */ /* copying in words (4-byte or 8-byte chunks) */ L(ua_wordCopy_loop): C_LDHI v1,UNIT(0)(a1) C_LDLO v1,UNITM1(1)(a1) PTR_ADDIU a0,a0,UNIT(1) PTR_ADDIU a1,a1,UNIT(1) bne a0,a3,L(ua_wordCopy_loop) C_ST v1,UNIT(-1)(a0) /* Copy the last 8 (or 16) bytes */ L(ua_smallCopy): beqz a2,L(leave) PTR_ADDU a3,a0,a2 /* a3 is the last dst address */ L(ua_smallCopy_loop): lb v1,0(a1) PTR_ADDIU a0,a0,1 PTR_ADDIU a1,a1,1 bne a0,a3,L(ua_smallCopy_loop) sb v1,-1(a0) j ra nop #else /* R6_CODE */ # ifdef __MIPSEB # define SWAP_REGS(X,Y) X, Y # define ALIGN_OFFSET(N) (N) # else # define SWAP_REGS(X,Y) Y, X # define ALIGN_OFFSET(N) (NSIZE-N) # endif # define R6_UNALIGNED_WORD_COPY(BYTEOFFSET) \ andi REG7, a2, (NSIZE-1);/* REG7 is # of bytes to by bytes. */ \ beq REG7, a2, L(lastb); /* Check for bytes to copy by word */ \ PTR_SUBU a3, a2, REG7; /* a3 is number of bytes to be copied in */ \ /* (d)word chunks. */ \ move a2, REG7; /* a2 is # of bytes to copy byte by byte */ \ /* after word loop is finished. */ \ PTR_ADDU REG6, a0, a3; /* REG6 is the dst address after loop. */ \ PTR_SUBU REG2, a1, t8; /* REG2 is the aligned src address. */ \ PTR_ADDU a1, a1, a3; /* a1 is addr of source after word loop. */ \ C_LD t0, UNIT(0)(REG2); /* Load first part of source. */ \ L(r6_ua_wordcopy##BYTEOFFSET): \ C_LD t1, UNIT(1)(REG2); /* Load second part of source. */ \ C_ALIGN REG3, SWAP_REGS(t1,t0), ALIGN_OFFSET(BYTEOFFSET); \ PTR_ADDIU a0, a0, UNIT(1); /* Increment destination pointer. */ \ PTR_ADDIU REG2, REG2, UNIT(1); /* Increment aligned source pointer.*/ \ move t0, t1; /* Move second part of source to first. */ \ bne a0, REG6,L(r6_ua_wordcopy##BYTEOFFSET); \ C_ST REG3, UNIT(-1)(a0); \ j L(lastb); \ nop /* We are generating R6 code, the destination is 4 byte aligned and the source is not 4 byte aligned. t8 is 1, 2, or 3 depending on the alignment of the source. */ L(r6_unaligned1): R6_UNALIGNED_WORD_COPY(1) L(r6_unaligned2): R6_UNALIGNED_WORD_COPY(2) L(r6_unaligned3): R6_UNALIGNED_WORD_COPY(3) # ifdef USE_DOUBLE L(r6_unaligned4): R6_UNALIGNED_WORD_COPY(4) L(r6_unaligned5): R6_UNALIGNED_WORD_COPY(5) L(r6_unaligned6): R6_UNALIGNED_WORD_COPY(6) L(r6_unaligned7): R6_UNALIGNED_WORD_COPY(7) # endif #endif /* R6_CODE */ .set at .set reorder END(MEMCPY_NAME) #ifndef ANDROID_CHANGES # ifdef _LIBC libc_hidden_builtin_def (MEMCPY_NAME) # endif #endif