/* Copyright (C) 1991, 92, 93, 94, 96 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifdef __GNUC__ #include #ifdef __NO_M81_MATH_INLINES /* This is used when defining the functions themselves. Define them with __ names, and with `static inline' instead of `extern inline' so the bodies will always be used, never an external function call. */ #define __m81_u(x) __CONCAT(__,x) #define __m81_inline static __inline #else #define __m81_u(x) x #define __m81_inline extern __inline #define __M81_MATH_INLINES 1 #endif /* Define a const math function. */ #define __m81_defun(rettype, func, args) \ __m81_inline rettype \ __m81_u(func) args __attribute__((__const__)); \ __m81_inline rettype \ __m81_u(func) args /* Define the three variants of a math function that has a direct implementation in the m68k fpu. FUNC is the name for C (which will be suffixed with f and l for the float and long double version, resp). OP is the name of the fpu operation (without leading f). */ #define __inline_mathop(func, op) \ __m81_defun (double, func, (double __mathop_x)) \ { \ double __result; \ __asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\ return __result; \ } \ __m81_defun (float, func##f, (float __mathop_x)) \ { \ float __result; \ __asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\ return __result; \ } \ __m81_defun (long double, func##l, (long double __mathop_x)) \ { \ long double __result; \ __asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\ return __result; \ } /* ieee style elementary functions */ __inline_mathop(__ieee754_acos, acos) __inline_mathop(__ieee754_asin, asin) __inline_mathop(__ieee754_cosh, cosh) __inline_mathop(__ieee754_sinh, sinh) __inline_mathop(__ieee754_exp, etox) __inline_mathop(__ieee754_log10, log10) __inline_mathop(__ieee754_log, logn) __inline_mathop(__ieee754_sqrt, sqrt) __inline_mathop(__ieee754_atanh, atanh) __inline_mathop(__atan, atan) __inline_mathop(__cos, cos) __inline_mathop(__sin, sin) __inline_mathop(__tan, tan) __inline_mathop(__tanh, tanh) __inline_mathop(__fabs, abs) __inline_mathop(__sqrt, sqrt) __inline_mathop(__rint, int) __inline_mathop(__expm1, etoxm1) __inline_mathop(__log1p, lognp1) __inline_mathop(__logb, log2) __inline_mathop(__significand, getman) /* This macro contains the definition for the rest of the inline functions, using __FLOAT_TYPE as the domain type and __S as the suffix for the function names. */ #define __inline_functions(__float_type, __s) \ __m81_defun (__float_type, \ __ieee754_remainder##__s, (__float_type __x, __float_type __y)) \ { \ __float_type __result; \ __asm("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); \ return __result; \ } \ \ __m81_defun (__float_type, \ __ieee754_fmod##__s, (__float_type __x, __float_type __y)) \ { \ __float_type __result; \ __asm("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); \ return __result; \ } \ \ __m81_defun (__float_type, \ __ieee754_atan2##__s, (__float_type __y, __float_type __x)) \ { \ __float_type __pi, __pi_2; \ \ __asm ("fmovecr%.x %#0, %0" : "=f" (__pi)); \ __asm ("fscale%.w %#-1, %0" : "=f" (__pi_2) : "0" (__pi)); \ if (__x > 0) \ { \ if (__y > 0) \ { \ if (__x > __y) \ return __m81_u(__atan##__s) (__y / __x); \ else \ return __pi_2 - __m81_u(__atan##__s) (__x / __y); \ } \ else \ { \ if (__x > -__y) \ return __m81_u(__atan##__s) (__y / __x); \ else \ return -__pi_2 - __m81_u(__atan##__s) (__x / __y); \ } \ } \ else \ { \ if (__y > 0) \ { \ if (-__x < __y) \ return __pi + __m81_u(__atan##__s) (__y / __x); \ else \ return __pi_2 - __m81_u(__atan##__s) (__x / __y); \ } \ else \ { \ if (-__x > -__y) \ return -__pi + __m81_u(__atan##__s) (__y / __x); \ else \ return -__pi_2 - __m81_u(__atan##__s) (__x / __y); \ } \ } \ } \ \ __m81_inline __float_type \ __m81_u(__frexp##__s)(__float_type __value, int *__expptr) \ { \ __float_type __mantissa, __exponent; \ int __iexponent; \ if (__value == 0.0) \ { \ *__expptr = 0; \ return __value; \ } \ __asm("fgetexp%.x %1, %0" : "=f" (__exponent) : "f" (__value)); \ __iexponent = (int) __exponent + 1; \ *__expptr = __iexponent; \ __asm("fscale%.l %2, %0" : "=f" (__mantissa) \ : "0" (__value), "dmi" (-__iexponent)); \ return __mantissa; \ } \ \ __m81_defun (__float_type, __floor##__s, (__float_type __x)) \ { \ __float_type __result; \ unsigned long int __ctrl_reg; \ __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); \ /* Set rounding towards negative infinity. */ \ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \ : "dmi" ((__ctrl_reg & ~0x10) | 0x20)); \ /* Convert X to an integer, using -Inf rounding. */ \ __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); \ /* Restore the previous rounding mode. */ \ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \ : "dmi" (__ctrl_reg)); \ return __result; \ } \ \ __m81_defun (__float_type, \ __ieee754_pow##__s, (__float_type __x, __float_type __y)) \ { \ __float_type __result; \ if (__x == 0.0) \ { \ if (__y <= 0.0) \ __result = 0.0 / 0.0; \ else \ __result = 0.0; \ } \ else if (__y == 0.0 || __x == 1.0) \ __result = 1.0; \ else if (__y == 1.0) \ __result = __x; \ else if (__y == 2.0) \ __result = __x * __x; \ else if (__x == 10.0) \ __asm("ftentox%.x %1, %0" : "=f" (__result) : "f" (__y)); \ else if (__x == 2.0) \ __asm("ftwotox%.x %1, %0" : "=f" (__result) : "f" (__y)); \ else if (__x < 0.0) \ { \ __float_type __temp = __m81_u (__rint##__s) (__y); \ if (__y == __temp) \ { \ int __i = (int) __y; \ __result = (__m81_u(__ieee754_exp##__s) \ (__y * __m81_u(__ieee754_log##__s) (-__x))); \ if (__i & 1) \ __result = -__result; \ } \ else \ __result = 0.0 / 0.0; \ } \ else \ __result = (__m81_u(__ieee754_exp##__s) \ (__y * __m81_u(__ieee754_log##__s) (__x))); \ return __result; \ } \ \ __m81_defun (__float_type, __ceil##__s, (__float_type __x)) \ { \ __float_type __result; \ unsigned long int __ctrl_reg; \ __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); \ /* Set rounding towards positive infinity. */ \ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \ : "dmi" (__ctrl_reg | 0x30)); \ /* Convert X to an integer, using +Inf rounding. */ \ __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); \ /* Restore the previous rounding mode. */ \ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \ : "dmi" (__ctrl_reg)); \ return __result; \ } \ \ __m81_inline __float_type \ __m81_u(__modf##__s)(__float_type __value, __float_type *__iptr) \ { \ __float_type __modf_int; \ __asm ("fintrz%.x %1, %0" : "=f" (__modf_int) : "f" (__value)); \ *__iptr = __modf_int; \ return __value - __modf_int; \ } \ \ __m81_defun (int, __isinf##__s, (__float_type __value)) \ { \ /* There is no branch-condition for infinity, \ so we must extract and examine the condition codes manually. */ \ unsigned long int __fpsr; \ __asm("ftst%.x %1\n" \ "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); \ return (__fpsr & (2 << 24)) ? (__fpsr & (8 << 24) ? -1 : 1) : 0; \ } \ \ __m81_defun (int, __isnan##__s, (__float_type __value)) \ { \ char __result; \ __asm("ftst%.x %1\n" \ "fsun %0" : "=dm" (__result) : "f" (__value)); \ return __result; \ } \ \ __m81_defun (int, __finite##__s, (__float_type __value)) \ { \ /* There is no branch-condition for infinity, so we must extract and \ examine the condition codes manually. */ \ unsigned long int __fpsr; \ __asm ("ftst%.x %1\n" \ "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); \ return (__fpsr & (3 << 24)) == 0; \ } \ \ __m81_defun (int, __ilogb##__s, (__float_type __x)) \ { \ __float_type __result; \ if (__x == 0.0) \ return 0x80000001; \ __asm("fgetexp%.x %1, %0" : "=f" (__result) : "f" (__x)); \ return (int) __result; \ } \ \ __m81_defun (__float_type, \ __ieee754_scalb##__s, (__float_type __x, __float_type __n)) \ { \ __float_type __result; \ __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__n), "0" (__x)); \ return __result; \ } \ \ __m81_defun (__float_type, __scalbn##__s, (__float_type __x, int __n)) \ { \ __float_type __result; \ __asm ("fscale%.l %1, %0" : "=f" (__result) : "dmi" (__n), "0" (__x)); \ return __result; \ } /* This defines the three variants of the inline functions. */ __inline_functions (double, ) __inline_functions (float, f) __inline_functions (long double, l) #undef __inline_functions #endif /* GCC. */