/* Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifdef __GNUC__ #include #ifdef __NO_M81_MATH_INLINES /* This is used when defining the functions themselves. Define them with __ names, and with `static inline' instead of `extern inline' so the bodies will always be used, never an external function call. */ #define __m81_u(x) __CONCAT(__,x) #define __m81_inline static __inline #else #define __m81_u(x) x #define __m81_inline extern __inline #define __M81_MATH_INLINES 1 #endif /* Define a const math function. */ #define __m81_defun(rettype, func, args) \ __m81_inline rettype \ __m81_u(func) args __attribute__((__const__)); \ __m81_inline rettype \ __m81_u(func) args #define __inline_mathop(func, op) \ __m81_defun (double, func, (double __mathop_x)) \ { \ double __result; \ __asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\ return __result; \ } #define __inline_mathopf(func, op) \ __m81_defun (float, func, (float __mathop_x)) \ { \ float __result; \ __asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\ return __result; \ } #define __inline_mathopl(func, op) \ __m81_defun (long double, func, (long double __mathop_x)) \ { \ long double __result; \ __asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\ return __result; \ } /* ieee style elementary functions */ __inline_mathop(__ieee754_acos, acos) __inline_mathop(__ieee754_asin, asin) __inline_mathop(__ieee754_cosh, cosh) __inline_mathop(__ieee754_sinh, sinh) __inline_mathop(__ieee754_exp, etox) __inline_mathop(__ieee754_log10, log10) __inline_mathop(__ieee754_log, logn) __inline_mathop(__ieee754_sqrt, sqrt) __inline_mathop(__ieee754_atanh, atanh) /* ieee style elementary float functions */ __inline_mathopf(__ieee754_acosf, acos) __inline_mathopf(__ieee754_asinf, asin) __inline_mathopf(__ieee754_coshf, cosh) __inline_mathopf(__ieee754_sinhf, sinh) __inline_mathopf(__ieee754_expf, etox) __inline_mathopf(__ieee754_log10f, log10) __inline_mathopf(__ieee754_logf, logn) __inline_mathopf(__ieee754_sqrtf, sqrt) __inline_mathopf(__ieee754_atanhf, atan) /* ieee style elementary long double functions */ __inline_mathopl(__ieee754_acosl, acos) __inline_mathopl(__ieee754_asinl, asin) __inline_mathopl(__ieee754_coshl, cosh) __inline_mathopl(__ieee754_sinhl, sinh) __inline_mathopl(__ieee754_expl, etox) __inline_mathopl(__ieee754_log10l, log10) __inline_mathopl(__ieee754_logl, logn) __inline_mathopl(__ieee754_sqrtl, sqrt) __inline_mathopl(__ieee754_atanhl, atan) __inline_mathop(__atan, atan) __inline_mathop(__cos, cos) __inline_mathop(__sin, sin) __inline_mathop(__tan, tan) __inline_mathop(__tanh, tanh) __inline_mathop(__fabs, abs) __inline_mathop(__sqrt, sqrt) __inline_mathop(__rint, int) __inline_mathop(__expm1, etoxm1) __inline_mathop(__log1p, lognp1) __inline_mathop(__logb, log2) __inline_mathop(__significand, getman) __inline_mathopf(__atanf, atan) __inline_mathopf(__cosf, cos) __inline_mathopf(__sinf, sin) __inline_mathopf(__tanf, tan) __inline_mathopf(__tanhf, tanh) __inline_mathopf(__fabsf, abs) __inline_mathopf(__sqrtf, sqrt) __inline_mathopf(__rintf, int) __inline_mathopf(__expm1f, etoxm1) __inline_mathopf(__log1pf, lognp1) __inline_mathopf(__logbf, log2) __inline_mathopf(__significandf, getman) __inline_mathopl(__atanl, atan) __inline_mathopl(__cosl, cos) __inline_mathopl(__sinl, sin) __inline_mathopl(__tanl, tan) __inline_mathopl(__tanhl, tanh) __inline_mathopl(__fabsl, abs) __inline_mathopl(__sqrtl, sqrt) __inline_mathopl(__rintl, int) __inline_mathopl(__expm1l, etoxm1) __inline_mathopl(__log1pl, lognp1) __inline_mathopl(__logbl, log2) __inline_mathopl(__significandl, getman) __m81_defun (double, __ieee754_remainder, (double __x, double __y)) { double __result; __asm("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); return __result; } __m81_defun (double, __ldexp, (double __x, int __e)) { double __result; double __double_e = (double) __e; __asm("fscale%.x %1, %0" : "=f" (__result) : "f" (__double_e), "0" (__x)); return __result; } __m81_defun (double, __ieee754_fmod, (double __x, double __y)) { double __result; __asm("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); return __result; } __m81_inline double __m81_u(__frexp)(double __value, int *__expptr) { double __mantissa, __exponent; __asm("fgetexp%.x %1, %0" : "=f" (__exponent) : "f" (__value)); __asm("fgetman%.x %1, %0" : "=f" (__mantissa) : "f" (__value)); *__expptr = (int) __exponent; return __mantissa; } __m81_defun (double, __floor, (double __x)) { double __result; unsigned long int __ctrl_reg; __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); /* Set rounding towards negative infinity. */ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ : "dmi" ((__ctrl_reg & ~0x10) | 0x20)); /* Convert X to an integer, using -Inf rounding. */ __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); /* Restore the previous rounding mode. */ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ : "dmi" (__ctrl_reg)); return __result; } __m81_defun (double, __ieee754_pow, (double __x, double __y)) { double __result; if (__x == 0.0) { if (__y <= 0.0) __result = 0.0 / 0.0; else __result = 0.0; } else if (__y == 0.0 || __x == 1.0) __result = 1.0; else if (__y == 1.0) __result = __x; else if (__y == 2.0) __result = __x * __x; else if (__x == 10.0) __asm("ftentox%.x %1, %0" : "=f" (__result) : "f" (__y)); else if (__x == 2.0) __asm("ftwotox%.x %1, %0" : "=f" (__result) : "f" (__y)); else if (__x < 0.0) { double __temp = __m81_u (__rint) (__y); if (__y == __temp) { int i = (int) __y; __result = __m81_u(__ieee754_exp)(__y * __m81_u(__ieee754_log)(-__x)); if (i & 1) __result = -__result; } else __result = 0.0 / 0.0; } else __result = __m81_u(__ieee754_exp)(__y * __m81_u(__ieee754_log)(__x)); return __result; } __m81_defun (double, __ceil, (double __x)) { double __result; unsigned long int __ctrl_reg; __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); /* Set rounding towards positive infinity. */ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ : "dmi" (__ctrl_reg | 0x30)); /* Convert X to an integer, using +Inf rounding. */ __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); /* Restore the previous rounding mode. */ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ : "dmi" (__ctrl_reg)); return __result; } __m81_inline double __m81_u(__modf)(double __value, double *__iptr) { double __modf_int; __asm ("fintrz%.x %1, %0" : "=f" (__modf_int) : "f" (__value)); *__iptr = __modf_int; return __value - __modf_int; } __m81_defun (int, __isinf, (double __value)) { /* There is no branch-condition for infinity, so we must extract and examine the condition codes manually. */ unsigned long int __fpsr; __asm("ftst%.x %1\n" "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); return (__fpsr & (2 << 24)) ? (__fpsr & (8 << 24) ? -1 : 1) : 0; } __m81_defun (int, __isnan, (double __value)) { char __result; __asm("ftst%.x %1\n" "fsun %0" : "=dm" (__result) : "f" (__value)); return __result; } __m81_defun (int, __finite, (double __value)) { /* There is no branch-condition for infinity, so we must extract and examine the condition codes manually. */ unsigned long int __fpsr; __asm ("ftst%.x %1\n" "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); return (__fpsr & (3 << 24)) == 0; } __m81_defun (int, __ilogb, (double __x)) { double __result; __asm("fgetexp%.x %1, %0" : "=f" (__result) : "f" (__x)); return (int) __result; } __m81_defun (double, __ieee754_scalb, (double __x, double __n)) { double __result; __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__n), "0" (__x)); return __result; } __m81_defun (double, __scalbn, (double __x, int __n)) { double __result; double __double_n = (double) __n; __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__double_n), "0" (__x)); return __result; } __m81_defun (float, __ieee754_remainderf, (float __x, float __y)) { float __result; __asm("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); return __result; } __m81_defun (float, __ldexpf, (float __x, int __e)) { float __result; float __float_e = (float) __e; __asm("fscale%.x %1, %0" : "=f" (__result) : "f" (__float_e), "0" (__x)); return __result; } __m81_defun (float, __ieee754_fmodf, (float __x, float __y)) { float __result; __asm("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); return __result; } __m81_inline float __m81_u(__frexpf)(float __value, int *__expptr) { float __mantissa, __exponent; __asm("fgetexp%.x %1, %0" : "=f" (__exponent) : "f" (__value)); __asm("fgetman%.x %1, %0" : "=f" (__mantissa) : "f" (__value)); *__expptr = (int) __exponent; return __mantissa; } __m81_defun (float, __floorf, (float __x)) { float __result; unsigned long int __ctrl_reg; __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); /* Set rounding towards negative infinity. */ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ : "dmi" ((__ctrl_reg & ~0x10) | 0x20)); /* Convert X to an integer, using -Inf rounding. */ __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); /* Restore the previous rounding mode. */ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ : "dmi" (__ctrl_reg)); return __result; } __m81_defun (float, __ieee754_powf, (float __x, float __y)) { float __result; if (__x == 0.0f) { if (__y <= 0.0f) __result = 0.0f / 0.0f; else __result = 0.0f; } else if (__y == 0.0f || __x == 1.0f) __result = 1.0; else if (__y == 1.0f) __result = __x; else if (__y == 2.0f) __result = __x * __x; else if (__x == 10.0f) __asm("ftentox%.x %1, %0" : "=f" (__result) : "f" (__y)); else if (__x == 2.0f) __asm("ftwotox%.x %1, %0" : "=f" (__result) : "f" (__y)); else if (__x < 0.0f) { float __temp = __m81_u(__rintf)(__y); if (__y == __temp) { int i = (int) __y; __result = __m81_u(__ieee754_expf)(__y * __m81_u(__ieee754_logf)(-__x)); if (i & 1) __result = -__result; } else __result = 0.0f / 0.0f; } else __result = __m81_u(__ieee754_expf)(__y * __m81_u(__ieee754_logf)(__x)); return __result; } __m81_defun (float, __ceilf, (float __x)) { float __result; unsigned long int __ctrl_reg; __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); /* Set rounding towards positive infinity. */ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ : "dmi" (__ctrl_reg | 0x30)); /* Convert X to an integer, using +Inf rounding. */ __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); /* Restore the previous rounding mode. */ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ : "dmi" (__ctrl_reg)); return __result; } __m81_inline float __m81_u(__modff)(float __value, float *__iptr) { float __modf_int; __asm ("fintrz%.x %1, %0" : "=f" (__modf_int) : "f" (__value)); *__iptr = __modf_int; return __value - __modf_int; } __m81_defun (int, __isinff, (float __value)) { /* There is no branch-condition for infinity, so we must extract and examine the condition codes manually. */ unsigned long int __fpsr; __asm("ftst%.x %1\n" "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); return (__fpsr & (2 << 24)) ? (__fpsr & (8 << 24) ? -1 : 1) : 0; } __m81_defun (int, __isnanf, (float __value)) { char __result; __asm("ftst%.x %1\n" "fsun %0" : "=dm" (__result) : "f" (__value)); return __result; } __m81_defun (int, __finitef, (float __value)) { /* There is no branch-condition for infinity, so we must extract and examine the condition codes manually. */ unsigned long int __fpsr; __asm ("ftst%.x %1\n" "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); return (__fpsr & (3 << 24)) == 0; } __m81_defun (int, __ilogbf, (float __x)) { float __result; __asm("fgetexp%.x %1, %0" : "=f" (__result) : "f" (__x)); return (int) __result; } __m81_defun (float, __ieee754_scalbf, (float __x, float __n)) { float __result; __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__n), "0" (__x)); return __result; } __m81_defun (float, __scalbnf, (float __x, int __n)) { float __result; float __float_n = (float) __n; __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__float_n), "0" (__x)); return __result; } __m81_defun (long double, __ieee754_remainderl, (long double __x, long double __y)) { long double __result; __asm ("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); return __result; } __m81_defun (long double, __ldexpl, (long double __x, int __e)) { long double __result; long double __float_e = (long double) __e; __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__float_e), "0" (__x)); return __result; } __m81_defun (long double, __ieee754_fmodl, (long double __x, long double __y)) { long double __result; __asm("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); return __result; } __m81_inline long double __m81_u(__frexpl)(long double __value, int *__expptr) { long double __mantissa, __exponent; __asm("fgetexp%.x %1, %0" : "=f" (__exponent) : "f" (__value)); __asm("fgetman%.x %1, %0" : "=f" (__mantissa) : "f" (__value)); *__expptr = (int) __exponent; return __mantissa; } __m81_defun (long double, __floorl, (long double __x)) { long double __result; unsigned long int __ctrl_reg; __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); /* Set rounding towards negative infinity. */ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ : "dmi" ((__ctrl_reg & ~0x10) | 0x20)); /* Convert X to an integer, using -Inf rounding. */ __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); /* Restore the previous rounding mode. */ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ : "dmi" (__ctrl_reg)); return __result; } __m81_defun (long double, __ieee754_powl, (long double __x, long double __y)) { long double __result; if (__x == 0.0l) { if (__y <= 0.0l) __result = 0.0l / 0.0l; else __result = 0.0l; } else if (__y == 0.0l || __x == 1.0l) __result = 1.0; else if (__y == 1.0l) __result = __x; else if (__y == 2.0l) __result = __x * __x; else if (__x == 10.0l) __asm("ftentox%.x %1, %0" : "=f" (__result) : "f" (__y)); else if (__x == 2.0l) __asm("ftwotox%.x %1, %0" : "=f" (__result) : "f" (__y)); else if (__x < 0.0l) { long double __temp = __m81_u(__rintl)(__y); if (__y == __temp) { int i = (int) __y; __result = __m81_u(__ieee754_expl)(__y * __m81_u(__ieee754_logl)(-__x)); if (i & 1) __result = -__result; } else __result = 0.0l / 0.0l; } else __result = __m81_u(__ieee754_expl)(__y * __m81_u(__ieee754_logl)(__x)); return __result; } __m81_defun (long double, __ceill, (long double __x)) { long double __result; unsigned long int __ctrl_reg; __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); /* Set rounding towards positive infinity. */ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ : "dmi" (__ctrl_reg | 0x30)); /* Convert X to an integer, using +Inf rounding. */ __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); /* Restore the previous rounding mode. */ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ : "dmi" (__ctrl_reg)); return __result; } __m81_inline long double __m81_u(__modfl)(long double __value, long double *__iptr) { long double __modf_int; __asm ("fintrz%.x %1, %0" : "=f" (__modf_int) : "f" (__value)); *__iptr = __modf_int; return __value - __modf_int; } __m81_defun (int, __isinfl, (long double __value)) { /* There is no branch-condition for infinity, so we must extract and examine the condition codes manually. */ unsigned long int __fpsr; __asm("ftst%.x %1\n" "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); return (__fpsr & (2 << 24)) ? (__fpsr & (8 << 24) ? -1 : 1) : 0; } __m81_defun (int, __isnanl, (long double __value)) { char __result; __asm("ftst%.x %1\n" "fsun %0" : "=dm" (__result) : "f" (__value)); return __result; } __m81_defun (int, __finitel, (long double __value)) { /* There is no branch-condition for infinity, so we must extract and examine the condition codes manually. */ unsigned long int __fpsr; __asm ("ftst%.x %1\n" "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); return (__fpsr & (3 << 24)) == 0; } __m81_defun (int, __ilogbl, (long double __x)) { long double __result; __asm("fgetexp%.x %1, %0" : "=f" (__result) : "f" (__x)); return (int) __result; } __m81_defun (long double, __ieee754_scalbl, (long double __x, long double __n)) { long double __result; __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__n), "0" (__x)); return __result; } __m81_defun (long double, __scalbnl, (long double __x, int __n)) { long double __result; long double __float_n = (long double) __n; __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__float_n), "0" (__x)); return __result; } #endif /* GCC. */