/* Machine-dependent ELF dynamic relocation inline functions. m68k version. Copyright (C) 1996 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define ELF_MACHINE_NAME "m68k" #include #include #include /* Return nonzero iff E_MACHINE is compatible with the running host. */ static inline int elf_machine_matches_host (Elf32_Half e_machine) { switch (e_machine) { case EM_68K: return 1; default: return 0; } } /* Return the run-time address of the _GLOBAL_OFFSET_TABLE_. Must be inlined in a function which uses global data. */ static inline Elf32_Addr * elf_machine_got (void) { register Elf32_Addr *got asm ("%a5"); return got; } /* Return the run-time load address of the shared object. */ static inline Elf32_Addr elf_machine_load_address (void) { Elf32_Addr addr; asm ("here: lea here(%%pc), %0\n" " sub.l %#here, %0" : "=a" (addr)); return addr; } /* The `subl' insn above will contain an R_68K_RELATIVE relocation entry intended to insert the run-time address of the label `here'. This will be the first relocation in the text of the dynamic linker; we skip it to avoid trying to modify read-only text in this early stage. */ #define ELF_MACHINE_BEFORE_RTLD_RELOC(dynamic_info) \ ((dynamic_info)[DT_RELA]->d_un.d_ptr += sizeof (Elf32_Rela), \ (dynamic_info)[DT_RELASZ]->d_un.d_val -= sizeof (Elf32_Rela)) /* Perform the relocation specified by RELOC and SYM (which is fully resolved). MAP is the object containing the reloc. */ static inline void elf_machine_rela (struct link_map *map, const Elf32_Rela *reloc, const Elf32_Sym *sym, Elf32_Addr (*resolve) (const Elf32_Sym **ref, Elf32_Addr reloc_addr, int noplt)) { Elf32_Addr *const reloc_addr = (void *) (map->l_addr + reloc->r_offset); Elf32_Addr loadbase; #ifdef RTLD_BOOTSTRAP #define RESOLVE(noplt) map->l_addr #else #define RESOLVE(noplt) (*resolve) (&sym, (Elf32_Addr) reloc_addr, noplt) #endif switch (ELF32_R_TYPE (reloc->r_info)) { case R_68K_COPY: loadbase = RESOLVE (0); memcpy (reloc_addr, (void *) (loadbase + sym->st_value), sym->st_size); break; case R_68K_GLOB_DAT: loadbase = RESOLVE (0); *reloc_addr = sym ? (loadbase + sym->st_value) : 0; break; case R_68K_JMP_SLOT: loadbase = RESOLVE (1); *reloc_addr = sym ? (loadbase + sym->st_value) : 0; break; case R_68K_8: loadbase = RESOLVE (0); *(char *) reloc_addr = ((sym ? (loadbase + sym->st_value) : 0) + reloc->r_addend); break; case R_68K_16: loadbase = RESOLVE (0); *(short *) reloc_addr = ((sym ? (loadbase + sym->st_value) : 0) + reloc->r_addend); break; case R_68K_32: loadbase = RESOLVE (0); *reloc_addr = ((sym ? (loadbase + sym->st_value) : 0) + reloc->r_addend); break; case R_68K_RELATIVE: *reloc_addr = map->l_addr + reloc->r_addend; break; case R_68K_PC8: loadbase = RESOLVE (0); *(char *) reloc_addr = ((sym ? (loadbase + sym->st_value) : 0) + reloc->r_addend - (Elf32_Addr) reloc_addr); break; case R_68K_PC16: loadbase = RESOLVE (0); *(short *) reloc_addr = ((sym ? (loadbase + sym->st_value) : 0) + reloc->r_addend - (Elf32_Addr) reloc_addr); break; case R_68K_PC32: loadbase = RESOLVE (0); *reloc_addr = ((sym ? (loadbase + sym->st_value) : 0) + reloc->r_addend - (Elf32_Addr) reloc_addr); break; case R_68K_NONE: /* Alright, Wilbur. */ break; default: assert (! "unexpected dynamic reloc type"); break; } #undef RESOLVE } static inline void elf_machine_lazy_rel (struct link_map *map, const Elf32_Rela *reloc) { Elf32_Addr *const reloc_addr = (void *) (map->l_addr + reloc->r_offset); switch (ELF32_R_TYPE (reloc->r_info)) { case R_68K_NONE: break; case R_68K_JMP_SLOT: *reloc_addr += map->l_addr; break; default: assert (! "unexpected PLT reloc type"); break; } } /* Nonzero iff TYPE describes relocation of a PLT entry, so PLT entries should not be allowed to define the value. */ #define elf_machine_pltrel_p(type) ((type) == R_68K_JMP_SLOT) /* The m68k never uses Elf32_Rel relocations. */ #define ELF_MACHINE_NO_REL 1 /* Set up the loaded object described by L so its unrelocated PLT entries will jump to the on-demand fixup code in dl-runtime.c. */ static inline void elf_machine_runtime_setup (struct link_map *l, int lazy) { Elf32_Addr *got; extern void _dl_runtime_resolve (Elf32_Word); if (l->l_info[DT_JMPREL] && lazy) { /* The GOT entries for functions in the PLT have not yet been filled in. Their initial contents will arrange when called to push an offset into the .rela.plt section, push _GLOBAL_OFFSET_TABLE_[1], and then jump to _GLOBAL_OFFSET_TABLE_[2]. */ got = (Elf32_Addr *) (l->l_addr + l->l_info[DT_PLTGOT]->d_un.d_ptr); got[1] = (Elf32_Addr) l; /* Identify this shared object. */ /* This function will get called to fix up the GOT entry indicated by the offset on the stack, and then jump to the resolved address. */ got[2] = (Elf32_Addr) &_dl_runtime_resolve; } /* This code is used in dl-runtime.c to call the `fixup' function and then redirect to the address it returns. */ #define ELF_MACHINE_RUNTIME_TRAMPOLINE asm ("\ | Trampoline for _dl_runtime_resolver .globl _dl_runtime_resolve .type _dl_runtime_resolve, @function _dl_runtime_resolve: | Save %a0 (struct return address) and %a1. move.l %a0, -(%sp) move.l %a1, -(%sp) | Call the real address resolver. jbsr fixup | Restore register %a0 and %a1. move.l (%sp)+, %a1 move.l (%sp)+, %a0 | Pop parameters addq.l #8, %sp | Call real function. jmp (%d0) .size _dl_runtime_resolve, . - _dl_runtime_resolve "); #define ELF_MACHINE_RUNTIME_FIXUP_ARGS long int save_a0, long int save_a1 /* The PLT uses Elf32_Rela relocs. */ #define elf_machine_relplt elf_machine_rela } /* Mask identifying addresses reserved for the user program, where the dynamic linker should not map anything. */ #define ELF_MACHINE_USER_ADDRESS_MASK 0x80000000UL /* Initial entry point code for the dynamic linker. The C function `_dl_start' is the real entry point; its return value is the user program's entry point. */ #define RTLD_START asm ("\ .text .globl _start .globl _dl_start_user _start: move.l %sp, -(%sp) jbsr _dl_start addq.l #4, %sp _dl_start_user: | Save the user entry point address in %a4. move.l %d0, %a4 | Point %a5 at the GOT. lea _GLOBAL_OFFSET_TABLE_@GOTPC(%pc), %a5 | See if we were run as a command with the executable file | name as an extra leading argument. move.l ([_dl_skip_args@GOT, %a5]), %d0 jeq 0f | Pop the original argument count move.l (%sp)+, %d1 | Subtract _dl_skip_args from it. sub.l %d0, %d1 | Adjust the stack pointer to skip _dl_skip_args words. lea (%sp, %d0*4), %sp | Push back the modified argument count. move.l %d1, -(%sp) 0: | Push _dl_default_scope[2] as argument in _dl_init_next call below. move.l ([_dl_default_scope@GOT, %a5], 8), %d2 0: move.l %d2, -(%sp) | Call _dl_init_next to return the address of an initializer | function to run. bsr.l _dl_init_next@PLTPC add.l #4, %sp | Pop argument. | Check for zero return, when out of initializers. tst.l %d0 jeq 1f | Call the shared object initializer function. | NOTE: We depend only on the registers (%d2, %a4 and %a5) | and the return address pushed by this call; | the initializer is called with the stack just | as it appears on entry, and it is free to move | the stack around, as long as it winds up jumping to | the return address on the top of the stack. move.l %d0, %a0 jsr (%a0) | Loop to call _dl_init_next for the next initializer. jra 0b 1: | Pass our finalizer function to the user in %a1. move.l _dl_fini@GOT(%a5), %a1 | Initialize %fp with the stack pointer. move.l %sp, %fp | Jump to the user's entry point. jmp (%a4)");