/* Quad-precision floating point sine on <-pi/4,pi/4>. Copyright (C) 1999-2018 Free Software Foundation, Inc. This file is part of the GNU C Library. Based on quad-precision sine by Jakub Jelinek The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ /* The polynomials have not been optimized for extended-precision and may contain more terms than needed. */ #include #include #include #include /* The polynomials have not been optimized for extended-precision and may contain more terms than needed. */ static const long double c[] = { #define ONE c[0] 1.00000000000000000000000000000000000E+00L, /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 ) x in <0,1/256> */ #define SCOS1 c[1] #define SCOS2 c[2] #define SCOS3 c[3] #define SCOS4 c[4] #define SCOS5 c[5] -5.00000000000000000000000000000000000E-01L, 4.16666666666666666666666666556146073E-02L, -1.38888888888888888888309442601939728E-03L, 2.48015873015862382987049502531095061E-05L, -2.75573112601362126593516899592158083E-07L, /* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 ) x in <0,0.1484375> */ #define SIN1 c[6] #define SIN2 c[7] #define SIN3 c[8] #define SIN4 c[9] #define SIN5 c[10] #define SIN6 c[11] #define SIN7 c[12] #define SIN8 c[13] -1.66666666666666666666666666666666538e-01L, 8.33333333333333333333333333307532934e-03L, -1.98412698412698412698412534478712057e-04L, 2.75573192239858906520896496653095890e-06L, -2.50521083854417116999224301266655662e-08L, 1.60590438367608957516841576404938118e-10L, -7.64716343504264506714019494041582610e-13L, 2.81068754939739570236322404393398135e-15L, /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 ) x in <0,1/256> */ #define SSIN1 c[14] #define SSIN2 c[15] #define SSIN3 c[16] #define SSIN4 c[17] #define SSIN5 c[18] -1.66666666666666666666666666666666659E-01L, 8.33333333333333333333333333146298442E-03L, -1.98412698412698412697726277416810661E-04L, 2.75573192239848624174178393552189149E-06L, -2.50521016467996193495359189395805639E-08L, }; #define SINCOSL_COS_HI 0 #define SINCOSL_COS_LO 1 #define SINCOSL_SIN_HI 2 #define SINCOSL_SIN_LO 3 extern const long double __sincosl_table[]; long double __kernel_sinl(long double x, long double y, int iy) { long double absx, h, l, z, sin_l, cos_l_m1; int index; absx = fabsl (x); if (absx < 0.1484375L) { /* Argument is small enough to approximate it by a Chebyshev polynomial of degree 17. */ if (absx < 0x1p-33L) { math_check_force_underflow (x); if (!((int)x)) return x; /* generate inexact */ } z = x * x; return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+ z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8))))))))); } else { /* So that we don't have to use too large polynomial, we find l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83 possible values for h. We look up cosl(h) and sinl(h) in pre-computed tables, compute cosl(l) and sinl(l) using a Chebyshev polynomial of degree 10(11) and compute sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l). */ index = (int) (128 * (absx - (0.1484375L - 1.0L / 256.0L))); h = 0.1484375L + index / 128.0; index *= 4; if (iy) l = (x < 0 ? -y : y) - (h - absx); else l = absx - h; z = l * l; sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5))))); cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5)))); z = __sincosl_table [index + SINCOSL_SIN_HI] + (__sincosl_table [index + SINCOSL_SIN_LO] + (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1) + (__sincosl_table [index + SINCOSL_COS_HI] * sin_l)); return (x < 0) ? -z : z; } }