#ifndef _MATH_PRIVATE_H_ #error "Never use directly; include instead." #endif #include #define EXTRACT_IBM_EXTENDED_MANTISSA(hi64, lo64, expnt, ibm_ext_ldbl) \ do \ { \ /* We have 105 bits of mantissa plus one implicit digit. Since \ 106 bits are representable without the rest using hexadecimal \ digits we use only the implicit digits for the number before \ the decimal point. */ \ unsigned long long hi, lo; \ int ediff; \ union ibm_extended_long_double eldbl; \ eldbl.d = ibm_ext_ldbl; \ expnt = eldbl.ieee.exponent - IBM_EXTENDED_LONG_DOUBLE_BIAS; \ \ lo = ((long long)eldbl.ieee.mantissa2 << 32) | eldbl.ieee.mantissa3; \ hi = ((long long)eldbl.ieee.mantissa0 << 32) | eldbl.ieee.mantissa1; \ /* If the lower double is not a denomal or zero then set the hidden \ 53rd bit. */ \ if (eldbl.ieee.exponent2 > 0x001) \ { \ lo |= (1ULL << 52); \ lo = lo << 7; /* pre-shift lo to match ieee854. */ \ /* The lower double is normalized separately from the upper. We \ may need to adjust the lower manitissa to reflect this. */ \ ediff = eldbl.ieee.exponent - eldbl.ieee.exponent2; \ if (ediff > 53) \ lo = lo >> (ediff-53); \ } \ hi |= (1ULL << 52); \ \ if ((eldbl.ieee.negative != eldbl.ieee.negative2) \ && ((eldbl.ieee.exponent2 != 0) && (lo != 0LL))) \ { \ hi--; \ lo = (1ULL << 60) - lo; \ if (hi < (1ULL << 52)) \ { \ /* we have a borrow from the hidden bit, so shift left 1. */ \ hi = (hi << 1) | (lo >> 59); \ lo = 0xfffffffffffffffLL & (lo << 1); \ expnt--; \ } \ } \ lo64 = (hi << 60) | lo; \ hi64 = hi >> 4; \ } \ while (0) #define INSERT_IBM_EXTENDED_MANTISSA(ibm_ext_ldbl, sign, expnt, hi64, lo64) \ do \ { \ union ibm_extended_long_double u; \ unsigned long hidden2, lzcount; \ unsigned long long hi, lo; \ \ u.ieee.negative = sign; \ u.ieee.negative2 = sign; \ u.ieee.exponent = expnt + IBM_EXTENDED_LONG_DOUBLE_BIAS; \ u.ieee.exponent2 = expnt-53 + IBM_EXTENDED_LONG_DOUBLE_BIAS; \ /* Expect 113 bits (112 bits + hidden) right justified in two longs. \ The low order 53 bits (52 + hidden) go into the lower double */ \ lo = (lo64 >> 7)& ((1ULL << 53) - 1); \ hidden2 = (lo64 >> 59) & 1ULL; \ /* The high order 53 bits (52 + hidden) go into the upper double */ \ hi = (lo64 >> 60) & ((1ULL << 11) - 1); \ hi |= (hi64 << 4); \ \ if (lo != 0LL) \ { \ /* hidden2 bit of low double controls rounding of the high double. \ If hidden2 is '1' then round up hi and adjust lo (2nd mantissa) \ plus change the sign of the low double to compensate. */ \ if (hidden2) \ { \ hi++; \ u.ieee.negative2 = !sign; \ lo = (1ULL << 53) - lo; \ } \ /* The hidden bit of the lo mantissa is zero so we need to \ normalize the it for the low double. Shift it left until the \ hidden bit is '1' then adjust the 2nd exponent accordingly. */ \ \ if (sizeof (lo) == sizeof (long)) \ lzcount = __builtin_clzl (lo); \ else if ((lo >> 32) != 0) \ lzcount = __builtin_clzl ((long) (lo >> 32)); \ else \ lzcount = __builtin_clzl ((long) lo) + 32; \ lzcount = lzcount - 11; \ if (lzcount > 0) \ { \ int expnt2 = u.ieee.exponent2 - lzcount; \ if (expnt2 >= 1) \ { \ /* Not denormal. Normalize and set low exponent. */ \ lo = lo << lzcount; \ u.ieee.exponent2 = expnt2; \ } \ else \ { \ /* Is denormal. */ \ lo = lo << (lzcount + expnt2); \ u.ieee.exponent2 = 0; \ } \ } \ } \ else \ { \ u.ieee.negative2 = 0; \ u.ieee.exponent2 = 0; \ } \ \ u.ieee.mantissa3 = lo & ((1ULL << 32) - 1); \ u.ieee.mantissa2 = (lo >> 32) & ((1ULL << 20) - 1); \ u.ieee.mantissa1 = hi & ((1ULL << 32) - 1); \ u.ieee.mantissa0 = (hi >> 32) & ((1ULL << 20) - 1); \ ibm_ext_ldbl = u.d; \ } \ while (0)