/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* __ieee754_log2(x) * Return the logarithm to base 2 of x * * Method : * 1. Argument Reduction: find k and f such that * x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Approximation of log(1+f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s * (the values of Lg1 to Lg7 are listed in the program) * and * | 2 14 | -58.45 * | Lg1*s +...+Lg7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log(1+f) = f - s*(f - R) (if f is not too large) * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) * * 3. Finally, log(x) = k + log(1+f). * = k+(f-(hfsq-(s*(hfsq+R)))) * * Special cases: * log2(x) is NaN with signal if x < 0 (including -INF) ; * log2(+INF) is +INF; log(0) is -INF with signal; * log2(NaN) is that NaN with no signal. * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ #include #include static const double ln2 = 0.69314718055994530942; static const double two54 = 1.80143985094819840000e+16; /* 4350000000000000 */ static const double Lg1 = 6.666666666666735130e-01; /* 3FE5555555555593 */ static const double Lg2 = 3.999999999940941908e-01; /* 3FD999999997FA04 */ static const double Lg3 = 2.857142874366239149e-01; /* 3FD2492494229359 */ static const double Lg4 = 2.222219843214978396e-01; /* 3FCC71C51D8E78AF */ static const double Lg5 = 1.818357216161805012e-01; /* 3FC7466496CB03DE */ static const double Lg6 = 1.531383769920937332e-01; /* 3FC39A09D078C69F */ static const double Lg7 = 1.479819860511658591e-01; /* 3FC2F112DF3E5244 */ static const double zero = 0.0; double __ieee754_log2 (double x) { double hfsq, f, s, z, R, w, t1, t2, dk; int64_t hx, i, j; int32_t k; EXTRACT_WORDS64 (hx, x); k = 0; if (hx < INT64_C(0x0010000000000000)) { /* x < 2**-1022 */ if (__glibc_unlikely ((hx & UINT64_C(0x7fffffffffffffff)) == 0)) return -two54 / (x - x); /* log(+-0)=-inf */ if (__glibc_unlikely (hx < 0)) return (x - x) / (x - x); /* log(-#) = NaN */ k -= 54; x *= two54; /* subnormal number, scale up x */ EXTRACT_WORDS64 (hx, x); } if (__glibc_unlikely (hx >= UINT64_C(0x7ff0000000000000))) return x + x; k += (hx >> 52) - 1023; hx &= UINT64_C(0x000fffffffffffff); i = (hx + UINT64_C(0x95f6400000000)) & UINT64_C(0x10000000000000); /* normalize x or x/2 */ INSERT_WORDS64 (x, hx | (i ^ UINT64_C(0x3ff0000000000000))); k += (i >> 52); dk = (double) k; f = x - 1.0; if ((UINT64_C(0x000fffffffffffff) & (2 + hx)) < 3) { /* |f| < 2**-20 */ if (f == zero) return dk; R = f * f * (0.5 - 0.33333333333333333 * f); return dk - (R - f) / ln2; } s = f / (2.0 + f); z = s * s; i = hx - UINT64_C(0x6147a00000000); w = z * z; j = UINT64_C(0x6b85100000000) - hx; t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); i |= j; R = t2 + t1; if (i > 0) { hfsq = 0.5 * f * f; return dk - ((hfsq - (s * (hfsq + R))) - f) / ln2; } else { return dk - ((s * (f - R)) - f) / ln2; } } strong_alias (__ieee754_log2, __log2_finite)