/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /************************************************************************/ /* */ /* MODULE_NAME:mplog.c */ /* */ /* FUNCTIONS: mplog */ /* */ /* FILES NEEDED: endian.h mpa.h mplog.h */ /* mpexp.c */ /* */ /* Multi-Precision logarithm function subroutine (for precision p >= 4, */ /* 2**(-1024) < x < 2**1024) and x is outside of the interval */ /* [1-2**(-54),1+2**(-54)]. Upon entry, x should be set to the */ /* multi-precision value of the input and y should be set into a multi- */ /* precision value of an approximation of log(x) with relative error */ /* bound of at most 2**(-52). The routine improves the accuracy of y. */ /* */ /************************************************************************/ #include "endian.h" #include "mpa.h" void __mpexp(mp_no *, mp_no *, int); void __mplog(mp_no *x, mp_no *y, int p) { #include "mplog.h" int i,m; #if 0 int j,k,m1,m2,n; double a,b; #endif static const int mp[33] = {0,0,0,0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4,4,4,4,4,4,4}; mp_no mpone = {0,{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}}; mp_no mpt1,mpt2; /* Choose m and initiate mpone */ m = mp[p]; mpone.e = 1; mpone.d[0]=mpone.d[1]=ONE; /* Perform m newton iterations to solve for y: exp(y)-x=0. */ /* The iterations formula is: y(n+1)=y(n)+(x*exp(-y(n))-1). */ __cpy(y,&mpt1,p); for (i=0; i