/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2016 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /**************************************************************************/ /* MODULE_NAME urem.c */ /* */ /* FUNCTION: uremainder */ /* */ /* An ultimate remainder routine. Given two IEEE double machine numbers x */ /* ,y it computes the correctly rounded (to nearest) value of remainder */ /* of dividing x by y. */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /* ************************************************************************/ #include "endian.h" #include "mydefs.h" #include "urem.h" #include "MathLib.h" #include #include /**************************************************************************/ /* An ultimate remainder routine. Given two IEEE double machine numbers x */ /* ,y it computes the correctly rounded (to nearest) value of remainder */ /**************************************************************************/ double __ieee754_remainder (double x, double y) { double z, d, xx; int4 kx, ky, n, nn, n1, m1, l; mynumber u, t, w = { { 0, 0 } }, v = { { 0, 0 } }, ww = { { 0, 0 } }, r; u.x = x; t.x = y; kx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign for x*/ t.i[HIGH_HALF] &= 0x7fffffff; /*no sign for y */ ky = t.i[HIGH_HALF]; /*------ |x| < 2^1023 and 2^-970 < |y| < 2^1024 ------------------*/ if (kx < 0x7fe00000 && ky < 0x7ff00000 && ky >= 0x03500000) { SET_RESTORE_ROUND_NOEX (FE_TONEAREST); if (kx + 0x00100000 < ky) return x; if ((kx - 0x01500000) < ky) { z = x / t.x; v.i[HIGH_HALF] = t.i[HIGH_HALF]; d = (z + big.x) - big.x; xx = (x - d * v.x) - d * (t.x - v.x); if (d - z != 0.5 && d - z != -0.5) return (xx != 0) ? xx : ((x > 0) ? ZERO.x : nZERO.x); else { if (fabs (xx) > 0.5 * t.x) return (z > d) ? xx - t.x : xx + t.x; else return xx; } } /* (kx<(ky+0x01500000)) */ else { r.x = 1.0 / t.x; n = t.i[HIGH_HALF]; nn = (n & 0x7ff00000) + 0x01400000; w.i[HIGH_HALF] = n; ww.x = t.x - w.x; l = (kx - nn) & 0xfff00000; n1 = ww.i[HIGH_HALF]; m1 = r.i[HIGH_HALF]; while (l > 0) { r.i[HIGH_HALF] = m1 - l; z = u.x * r.x; w.i[HIGH_HALF] = n + l; ww.i[HIGH_HALF] = (n1) ? n1 + l : n1; d = (z + big.x) - big.x; u.x = (u.x - d * w.x) - d * ww.x; l = (u.i[HIGH_HALF] & 0x7ff00000) - nn; } r.i[HIGH_HALF] = m1; w.i[HIGH_HALF] = n; ww.i[HIGH_HALF] = n1; z = u.x * r.x; d = (z + big.x) - big.x; u.x = (u.x - d * w.x) - d * ww.x; if (fabs (u.x) < 0.5 * t.x) return (u.x != 0) ? u.x : ((x > 0) ? ZERO.x : nZERO.x); else if (fabs (u.x) > 0.5 * t.x) return (d > z) ? u.x + t.x : u.x - t.x; else { z = u.x / t.x; d = (z + big.x) - big.x; return ((u.x - d * w.x) - d * ww.x); } } } /* (kx<0x7fe00000&&ky<0x7ff00000&&ky>=0x03500000) */ else { if (kx < 0x7fe00000 && ky < 0x7ff00000 && (ky > 0 || t.i[LOW_HALF] != 0)) { y = fabs (y) * t128.x; z = __ieee754_remainder (x, y) * t128.x; z = __ieee754_remainder (z, y) * tm128.x; return z; } else { if ((kx & 0x7ff00000) == 0x7fe00000 && ky < 0x7ff00000 && (ky > 0 || t.i[LOW_HALF] != 0)) { y = fabs (y); z = 2.0 * __ieee754_remainder (0.5 * x, y); d = fabs (z); if (d <= fabs (d - y)) return z; else if (d == y) return 0.0 * x; else return (z > 0) ? z - y : z + y; } else /* if x is too big */ { if (ky == 0 && t.i[LOW_HALF] == 0) /* y = 0 */ return (x * y) / (x * y); else if (kx >= 0x7ff00000 /* x not finite */ || (ky > 0x7ff00000 /* y is NaN */ || (ky == 0x7ff00000 && t.i[LOW_HALF] != 0))) return (x * y) / (x * y); else return x; } } } } strong_alias (__ieee754_remainder, __remainder_finite)