/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2016 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /*********************************************************************/ /* */ /* MODULE_NAME:ulog.c */ /* */ /* FUNCTION:ulog */ /* */ /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h */ /* mpexp.c mplog.c mpa.c */ /* ulog.tbl */ /* */ /* An ultimate log routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of log(x). */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /*********************************************************************/ #include "endian.h" #include #include "mpa.h" #include "MathLib.h" #include #include #include #ifndef SECTION # define SECTION #endif void __mplog (mp_no *, mp_no *, int); /*********************************************************************/ /* An ultimate log routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of log(x). */ /*********************************************************************/ double SECTION __ieee754_log (double x) { #define M 4 static const int pr[M] = { 8, 10, 18, 32 }; int i, j, n, ux, dx, p; double dbl_n, u, p0, q, r0, w, nln2a, luai, lubi, lvaj, lvbj, sij, ssij, ttij, A, B, B0, y, y1, y2, polI, polII, sa, sb, t1, t2, t7, t8, t, ra, rb, ww, a0, aa0, s1, s2, ss2, s3, ss3, a1, aa1, a, aa, b, bb, c; #ifndef DLA_FMS double t3, t4, t5, t6; #endif number num; mp_no mpx, mpy, mpy1, mpy2, mperr; #include "ulog.tbl" #include "ulog.h" /* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */ num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF]; n = 0; if (__glibc_unlikely (ux < 0x00100000)) { if (__glibc_unlikely (((ux & 0x7fffffff) | dx) == 0)) return MHALF / 0.0; /* return -INF */ if (__glibc_unlikely (ux < 0)) return (x - x) / 0.0; /* return NaN */ n -= 54; x *= two54.d; /* scale x */ num.d = x; } if (__glibc_unlikely (ux >= 0x7ff00000)) return x + x; /* INF or NaN */ /* Regular values of x */ w = x - 1; if (__glibc_likely (fabs (w) > U03)) goto case_03; /* log (1) is +0 in all rounding modes. */ if (w == 0.0) return 0.0; /*--- Stage I, the case abs(x-1) < 0.03 */ t8 = MHALF * w; EMULV (t8, w, a, aa, t1, t2, t3, t4, t5); EADD (w, a, b, bb); /* Evaluate polynomial II */ polII = b7.d + w * b8.d; polII = b6.d + w * polII; polII = b5.d + w * polII; polII = b4.d + w * polII; polII = b3.d + w * polII; polII = b2.d + w * polII; polII = b1.d + w * polII; polII = b0.d + w * polII; polII *= w * w * w; c = (aa + bb) + polII; /* End stage I, case abs(x-1) < 0.03 */ if ((y = b + (c + b * E2)) == b + (c - b * E2)) return y; /*--- Stage II, the case abs(x-1) < 0.03 */ a = d19.d + w * d20.d; a = d18.d + w * a; a = d17.d + w * a; a = d16.d + w * a; a = d15.d + w * a; a = d14.d + w * a; a = d13.d + w * a; a = d12.d + w * a; a = d11.d + w * a; EMULV (w, a, s2, ss2, t1, t2, t3, t4, t5); ADD2 (d10.d, dd10.d, s2, ss2, s3, ss3, t1, t2); MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (d9.d, dd9.d, s2, ss2, s3, ss3, t1, t2); MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (d8.d, dd8.d, s2, ss2, s3, ss3, t1, t2); MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (d7.d, dd7.d, s2, ss2, s3, ss3, t1, t2); MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (d6.d, dd6.d, s2, ss2, s3, ss3, t1, t2); MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (d5.d, dd5.d, s2, ss2, s3, ss3, t1, t2); MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (d4.d, dd4.d, s2, ss2, s3, ss3, t1, t2); MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (d3.d, dd3.d, s2, ss2, s3, ss3, t1, t2); MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (d2.d, dd2.d, s2, ss2, s3, ss3, t1, t2); MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); MUL2 (w, 0, s2, ss2, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (w, 0, s3, ss3, b, bb, t1, t2); /* End stage II, case abs(x-1) < 0.03 */ if ((y = b + (bb + b * E4)) == b + (bb - b * E4)) return y; goto stage_n; /*--- Stage I, the case abs(x-1) > 0.03 */ case_03: /* Find n,u such that x = u*2**n, 1/sqrt(2) < u < sqrt(2) */ n += (num.i[HIGH_HALF] >> 20) - 1023; num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000; if (num.d > SQRT_2) { num.d *= HALF; n++; } u = num.d; dbl_n = (double) n; /* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */ num.d += h1.d; i = (num.i[HIGH_HALF] & 0x000fffff) >> 12; /* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */ num.d = u * Iu[i].d + h2.d; j = (num.i[HIGH_HALF] & 0x000fffff) >> 4; /* Compute w=(u-ui*vj)/(ui*vj) */ p0 = (1 + (i - 75) * DEL_U) * (1 + (j - 180) * DEL_V); q = u - p0; r0 = Iu[i].d * Iv[j].d; w = q * r0; /* Evaluate polynomial I */ polI = w + (a2.d + a3.d * w) * w * w; /* Add up everything */ nln2a = dbl_n * LN2A; luai = Lu[i][0].d; lubi = Lu[i][1].d; lvaj = Lv[j][0].d; lvbj = Lv[j][1].d; EADD (luai, lvaj, sij, ssij); EADD (nln2a, sij, A, ttij); B0 = (((lubi + lvbj) + ssij) + ttij) + dbl_n * LN2B; B = polI + B0; /* End stage I, case abs(x-1) >= 0.03 */ if ((y = A + (B + E1)) == A + (B - E1)) return y; /*--- Stage II, the case abs(x-1) > 0.03 */ /* Improve the accuracy of r0 */ EMULV (p0, r0, sa, sb, t1, t2, t3, t4, t5); t = r0 * ((1 - sa) - sb); EADD (r0, t, ra, rb); /* Compute w */ MUL2 (q, 0, ra, rb, w, ww, t1, t2, t3, t4, t5, t6, t7, t8); EADD (A, B0, a0, aa0); /* Evaluate polynomial III */ s1 = (c3.d + (c4.d + c5.d * w) * w) * w; EADD (c2.d, s1, s2, ss2); MUL2 (s2, ss2, w, ww, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8); MUL2 (s3, ss3, w, ww, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); ADD2 (s2, ss2, w, ww, s3, ss3, t1, t2); ADD2 (s3, ss3, a0, aa0, a1, aa1, t1, t2); /* End stage II, case abs(x-1) >= 0.03 */ if ((y = a1 + (aa1 + E3)) == a1 + (aa1 - E3)) return y; /* Final stages. Use multi-precision arithmetic. */ stage_n: for (i = 0; i < M; i++) { p = pr[i]; __dbl_mp (x, &mpx, p); __dbl_mp (y, &mpy, p); __mplog (&mpx, &mpy, p); __dbl_mp (e[i].d, &mperr, p); __add (&mpy, &mperr, &mpy1, p); __sub (&mpy, &mperr, &mpy2, p); __mp_dbl (&mpy1, &y1, p); __mp_dbl (&mpy2, &y2, p); if (y1 == y2) { LIBC_PROBE (slowlog, 3, &p, &x, &y1); return y1; } } LIBC_PROBE (slowlog_inexact, 3, &p, &x, &y1); return y1; } #ifndef __ieee754_log strong_alias (__ieee754_log, __log_finite) #endif