/* Implementation of gamma function according to ISO C. Copyright (C) 1997-2013 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's approximation to gamma function. */ static const double gamma_coeff[] = { 0x1.5555555555555p-4, -0xb.60b60b60b60b8p-12, 0x3.4034034034034p-12, -0x2.7027027027028p-12, 0x3.72a3c5631fe46p-12, -0x7.daac36664f1f4p-12, }; #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0])) /* Return gamma (X), for positive X less than 184, in the form R * 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to avoid overflow or underflow in intermediate calculations. */ static double gamma_positive (double x, int *exp2_adj) { int local_signgam; if (x < 0.5) { *exp2_adj = 0; return __ieee754_exp (__ieee754_lgamma_r (x + 1, &local_signgam)) / x; } else if (x <= 1.5) { *exp2_adj = 0; return __ieee754_exp (__ieee754_lgamma_r (x, &local_signgam)); } else if (x < 6.5) { /* Adjust into the range for using exp (lgamma). */ *exp2_adj = 0; double n = __ceil (x - 1.5); double x_adj = x - n; double eps; double prod = __gamma_product (x_adj, 0, n, &eps); return (__ieee754_exp (__ieee754_lgamma_r (x_adj, &local_signgam)) * prod * (1.0 + eps)); } else { double eps = 0; double x_eps = 0; double x_adj = x; double prod = 1; if (x < 12.0) { /* Adjust into the range for applying Stirling's approximation. */ double n = __ceil (12.0 - x); #if FLT_EVAL_METHOD != 0 volatile #endif double x_tmp = x + n; x_adj = x_tmp; x_eps = (x - (x_adj - n)); prod = __gamma_product (x_adj - n, x_eps, n, &eps); } /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)). Compute gamma (X_ADJ + X_EPS) using Stirling's approximation, starting by computing pow (X_ADJ, X_ADJ) with a power of 2 factored out. */ double exp_adj = -eps; double x_adj_int = __round (x_adj); double x_adj_frac = x_adj - x_adj_int; int x_adj_log2; double x_adj_mant = __frexp (x_adj, &x_adj_log2); if (x_adj_mant < M_SQRT1_2) { x_adj_log2--; x_adj_mant *= 2.0; } *exp2_adj = x_adj_log2 * (int) x_adj_int; double ret = (__ieee754_pow (x_adj_mant, x_adj) * __ieee754_exp2 (x_adj_log2 * x_adj_frac) * __ieee754_exp (-x_adj) * __ieee754_sqrt (2 * M_PI / x_adj) / prod); exp_adj += x_eps * __ieee754_log (x); double bsum = gamma_coeff[NCOEFF - 1]; double x_adj2 = x_adj * x_adj; for (size_t i = 1; i <= NCOEFF - 1; i++) bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i]; exp_adj += bsum / x_adj; return ret + ret * __expm1 (exp_adj); } } double __ieee754_gamma_r (double x, int *signgamp) { int32_t hx; u_int32_t lx; EXTRACT_WORDS (hx, lx, x); if (__builtin_expect (((hx & 0x7fffffff) | lx) == 0, 0)) { /* Return value for x == 0 is Inf with divide by zero exception. */ *signgamp = 0; return 1.0 / x; } if (__builtin_expect (hx < 0, 0) && (u_int32_t) hx < 0xfff00000 && __rint (x) == x) { /* Return value for integer x < 0 is NaN with invalid exception. */ *signgamp = 0; return (x - x) / (x - x); } if (__builtin_expect ((unsigned int) hx == 0xfff00000 && lx == 0, 0)) { /* x == -Inf. According to ISO this is NaN. */ *signgamp = 0; return x - x; } if (__builtin_expect ((hx & 0x7ff00000) == 0x7ff00000, 0)) { /* Positive infinity (return positive infinity) or NaN (return NaN). */ *signgamp = 0; return x + x; } if (x >= 172.0) { /* Overflow. */ *signgamp = 0; return DBL_MAX * DBL_MAX; } else if (x > 0.0) { *signgamp = 0; int exp2_adj; double ret = gamma_positive (x, &exp2_adj); return __scalbn (ret, exp2_adj); } else if (x >= -DBL_EPSILON / 4.0) { *signgamp = 0; return 1.0 / x; } else { double tx = __trunc (x); *signgamp = (tx == 2.0 * __trunc (tx / 2.0)) ? -1 : 1; if (x <= -184.0) /* Underflow. */ return DBL_MIN * DBL_MIN; double frac = tx - x; if (frac > 0.5) frac = 1.0 - frac; double sinpix = (frac <= 0.25 ? __sin (M_PI * frac) : __cos (M_PI * (0.5 - frac))); int exp2_adj; double ret = M_PI / (-x * sinpix * gamma_positive (-x, &exp2_adj)); return __scalbn (ret, -exp2_adj); } } strong_alias (__ieee754_gamma_r, __gamma_r_finite)