/* Double-precision floating point 2^x. Copyright (C) 1997-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Geoffrey Keating The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ /* The basic design here is from Shmuel Gal and Boris Bachelis, "An Accurate Elementary Mathematical Library for the IEEE Floating Point Standard", ACM Trans. Math. Soft., 17 (1), March 1991, pp. 26-45. It has been slightly modified to compute 2^x instead of e^x. */ #include #include #include #include #include #include #include #include "t_exp2.h" static const double TWO1023 = 8.988465674311579539e+307; static const double TWOM1000 = 9.3326361850321887899e-302; double __ieee754_exp2 (double x) { static const double himark = (double) DBL_MAX_EXP; static const double lomark = (double) (DBL_MIN_EXP - DBL_MANT_DIG - 1); /* Check for usual case. */ if (__glibc_likely (isless (x, himark))) { /* Exceptional cases: */ if (__glibc_unlikely (!isgreaterequal (x, lomark))) { if (isinf (x)) /* e^-inf == 0, with no error. */ return 0; else /* Underflow */ return TWOM1000 * TWOM1000; } static const double THREEp42 = 13194139533312.0; int tval, unsafe; double rx, x22, result; union ieee754_double ex2_u, scale_u; if (fabs (x) < DBL_EPSILON / 4.0) return 1.0 + x; { SET_RESTORE_ROUND_NOEX (FE_TONEAREST); /* 1. Argument reduction. Choose integers ex, -256 <= t < 256, and some real -1/1024 <= x1 <= 1024 so that x = ex + t/512 + x1. First, calculate rx = ex + t/512. */ rx = x + THREEp42; rx -= THREEp42; x -= rx; /* Compute x=x1. */ /* Compute tval = (ex*512 + t)+256. Now, t = (tval mod 512)-256 and ex=tval/512 [that's mod, NOT %; and /-round-to-nearest not the usual c integer /]. */ tval = (int) (rx * 512.0 + 256.0); /* 2. Adjust for accurate table entry. Find e so that x = ex + t/512 + e + x2 where -1e6 < e < 1e6, and (double)(2^(t/512+e)) is accurate to one part in 2^-64. */ /* 'tval & 511' is the same as 'tval%512' except that it's always positive. Compute x = x2. */ x -= exp2_deltatable[tval & 511]; /* 3. Compute ex2 = 2^(t/512+e+ex). */ ex2_u.d = exp2_accuratetable[tval & 511]; tval >>= 9; /* x2 is an integer multiple of 2^-54; avoid intermediate underflow from the calculation of x22 * x. */ unsafe = abs (tval) >= -DBL_MIN_EXP - 56; ex2_u.ieee.exponent += tval >> unsafe; scale_u.d = 1.0; scale_u.ieee.exponent += tval - (tval >> unsafe); /* 4. Approximate 2^x2 - 1, using a fourth-degree polynomial, with maximum error in [-2^-10-2^-30,2^-10+2^-30] less than 10^-19. */ x22 = (((.0096181293647031180 * x + .055504110254308625) * x + .240226506959100583) * x + .69314718055994495) * ex2_u.d; math_opt_barrier (x22); } /* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex). */ result = x22 * x + ex2_u.d; if (!unsafe) return result; else { result *= scale_u.d; math_check_force_underflow_nonneg (result); return result; } } else /* Return x, if x is a NaN or Inf; or overflow, otherwise. */ return TWO1023 * x; } strong_alias (__ieee754_exp2, __exp2_finite)