.file "tgammaf.s" // Copyright (c) 2001 - 2005, Intel Corporation // All rights reserved. // // Contributed 2001 by the Intel Numerics Group, Intel Corporation // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT // LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL, // EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code,and requests that all // problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm. // //********************************************************************* // // History: // 11/30/01 Initial version // 05/20/02 Cleaned up namespace and sf0 syntax // 02/10/03 Reordered header: .section, .global, .proc, .align // 04/04/03 Changed error codes for overflow and negative integers // 04/10/03 Changed code for overflow near zero handling // 12/16/03 Fixed parameter passing to/from error handling routine // 03/31/05 Reformatted delimiters between data tables // //********************************************************************* // //********************************************************************* // // Function: tgammaf(x) computes the principle value of the GAMMA // function of x. // //********************************************************************* // // Resources Used: // // Floating-Point Registers: f8-f15 // f33-f75 // // General Purpose Registers: // r8-r11 // r14-r29 // r32-r36 // r37-r40 (Used to pass arguments to error handling routine) // // Predicate Registers: p6-p15 // //********************************************************************* // // IEEE Special Conditions: // // tgammaf(+inf) = +inf // tgammaf(-inf) = QNaN // tgammaf(+/-0) = +/-inf // tgammaf(x<0, x - integer) = QNaN // tgammaf(SNaN) = QNaN // tgammaf(QNaN) = QNaN // //********************************************************************* // // Overview // // The method consists of three cases. // // If 2 <= x < OVERFLOW_BOUNDARY use case tgamma_regular; // else if 0 < x < 2 use case tgamma_from_0_to_2; // else if -(i+1) < x < -i, i = 0...43 use case tgamma_negatives; // // Case 2 <= x < OVERFLOW_BOUNDARY // ------------------------------- // Here we use algorithm based on the recursive formula // GAMMA(x+1) = x*GAMMA(x). For that we subdivide interval // [2; OVERFLOW_BOUNDARY] into intervals [8*n; 8*(n+1)] and // approximate GAMMA(x) by polynomial of 22th degree on each // [8*n; 8*n+1], recursive formula is used to expand GAMMA(x) // to [8*n; 8*n+1]. In other words we need to find n, i and r // such that x = 8 * n + i + r where n and i are integer numbers // and r is fractional part of x. So GAMMA(x) = GAMMA(8*n+i+r) = // = (x-1)*(x-2)*...*(x-i)*GAMMA(x-i) = // = (x-1)*(x-2)*...*(x-i)*GAMMA(8*n+r) ~ // ~ (x-1)*(x-2)*...*(x-i)*P12n(r). // // Step 1: Reduction // ----------------- // N = [x] with truncate // r = x - N, note 0 <= r < 1 // // n = N & ~0xF - index of table that contains coefficient of // polynomial approximation // i = N & 0xF - is used in recursive formula // // // Step 2: Approximation // --------------------- // We use factorized minimax approximation polynomials // P12n(r) = A12*(r^2+C01(n)*r+C00(n))* // *(r^2+C11(n)*r+C10(n))*...*(r^2+C51(n)*r+C50(n)) // // Step 3: Recursion // ----------------- // In case when i > 0 we need to multiply P12n(r) by product // R(i,x)=(x-1)*(x-2)*...*(x-i). To reduce number of fp-instructions // we can calculate R as follow: // R(i,x) = ((x-1)*(x-2))*((x-3)*(x-4))*...*((x-(i-1))*(x-i)) if i is // even or R = ((x-1)*(x-2))*((x-3)*(x-4))*...*((x-(i-2))*(x-(i-1)))* // *(i-1) if i is odd. In both cases we need to calculate // R2(i,x) = (x^2-3*x+2)*(x^2-7*x+12)*...*(x^2+x+2*j*(2*j-1)) = // = ((x^2-x)+2*(1-x))*((x^2-x)+6*(2-x))*...*((x^2-x)+2*(2*j-1)*(j-x)) = // = (RA+2*RB)*(RA+6*(1-RB))*...*(RA+2*(2*j-1)*(j-1+RB)) // where j = 1..[i/2], RA = x^2-x, RB = 1-x. // // Step 4: Reconstruction // ---------------------- // Reconstruction is just simple multiplication i.e. // GAMMA(x) = P12n(r)*R(i,x) // // Case 0 < x < 2 // -------------- // To calculate GAMMA(x) on this interval we do following // if 1.0 <= x < 1.25 than GAMMA(x) = P7(x-1) // if 1.25 <= x < 1.5 than GAMMA(x) = P7(x-x_min) where // x_min is point of local minimum on [1; 2] interval. // if 1.5 <= x < 1.75 than GAMMA(x) = P7(x-1.5) // if 1.75 <= x < 2.0 than GAMMA(x) = P7(x-1.5) // and // if 0 < x < 1 than GAMMA(x) = GAMMA(x+1)/x // // Case -(i+1) < x < -i, i = 0...43 // ---------------------------------- // Here we use the fact that GAMMA(-x) = PI/(x*GAMMA(x)*sin(PI*x)) and // so we need to calculate GAMMA(x), sin(PI*x)/PI. Calculation of // GAMMA(x) is described above. // // Step 1: Reduction // ----------------- // Note that period of sin(PI*x) is 2 and range reduction for // sin(PI*x) is like to range reduction for GAMMA(x) // i.e rs = x - round(x) and |rs| <= 0.5. // // Step 2: Approximation // --------------------- // To approximate sin(PI*x)/PI = sin(PI*(2*n+rs))/PI = // = (-1)^n*sin(PI*rs)/PI Taylor series is used. // sin(PI*rs)/PI ~ S17(rs). // // Step 3: Division // ---------------- // To calculate 1/x and 1/(GAMMA(x)*S12(rs)) we use frcpa // instruction with following Newton-Raphson interations. // // //********************************************************************* GR_ad_Data = r8 GR_TAG = r8 GR_SignExp = r9 GR_Sig = r10 GR_ArgNz = r10 GR_RqDeg = r11 GR_NanBound = r14 GR_ExpOf025 = r15 GR_ExpOf05 = r16 GR_ad_Co = r17 GR_ad_Ce = r18 GR_TblOffs = r19 GR_Arg = r20 GR_Exp2Ind = r21 GR_TblOffsMask = r21 GR_Offs = r22 GR_OvfNzBound = r23 GR_ZeroResBound = r24 GR_ad_SinO = r25 GR_ad_SinE = r26 GR_Correction = r27 GR_Tbl12Offs = r28 GR_NzBound = r28 GR_ExpOf1 = r29 GR_fpsr = r29 GR_SAVE_B0 = r33 GR_SAVE_PFS = r34 GR_SAVE_GP = r35 GR_SAVE_SP = r36 GR_Parameter_X = r37 GR_Parameter_Y = r38 GR_Parameter_RESULT = r39 GR_Parameter_TAG = r40 FR_X = f10 FR_Y = f1 FR_RESULT = f8 FR_iXt = f11 FR_Xt = f12 FR_r = f13 FR_r2 = f14 FR_r4 = f15 FR_C01 = f33 FR_A7 = f33 FR_C11 = f34 FR_A6 = f34 FR_C21 = f35 FR_A5 = f35 FR_C31 = f36 FR_A4 = f36 FR_C41 = f37 FR_A3 = f37 FR_C51 = f38 FR_A2 = f38 FR_C00 = f39 FR_A1 = f39 FR_C10 = f40 FR_A0 = f40 FR_C20 = f41 FR_C30 = f42 FR_C40 = f43 FR_C50 = f44 FR_An = f45 FR_OvfBound = f46 FR_InvAn = f47 FR_Multplr = f48 FR_NormX = f49 FR_X2mX = f50 FR_1mX = f51 FR_Rq0 = f51 FR_Rq1 = f52 FR_Rq2 = f53 FR_Rq3 = f54 FR_Rcp0 = f55 FR_Rcp1 = f56 FR_Rcp2 = f57 FR_InvNormX1 = f58 FR_InvNormX2 = f59 FR_rs = f60 FR_rs2 = f61 FR_LocalMin = f62 FR_10 = f63 FR_05 = f64 FR_S32 = f65 FR_S31 = f66 FR_S01 = f67 FR_S11 = f68 FR_S21 = f69 FR_S00 = f70 FR_S10 = f71 FR_S20 = f72 FR_GAMMA = f73 FR_2 = f74 FR_6 = f75 // Data tables //============================================================== RODATA .align 16 LOCAL_OBJECT_START(tgammaf_data) data8 0x3FDD8B618D5AF8FE // local minimum (0.461632144968362356785) data8 0x4024000000000000 // 10.0 data8 0x3E90FC992FF39E13 // S32 data8 0xBEC144B2760626E2 // S31 // //[2; 8) data8 0x4009EFD1BA0CB3B4 // C01 data8 0x3FFFB35378FF4822 // C11 data8 0xC01032270413B896 // C41 data8 0xC01F171A4C0D6827 // C51 data8 0x40148F8E197396AC // C20 data8 0x401C601959F1249C // C30 data8 0x3EE21AD881741977 // An data8 0x4041852200000000 // overflow boundary (35.04010009765625) data8 0x3FD9CE68F695B198 // C21 data8 0xBFF8C30AC900DA03 // C31 data8 0x400E17D2F0535C02 // C00 data8 0x4010689240F7FAC8 // C10 data8 0x402563147DDCCF8D // C40 data8 0x4033406D0480A21C // C50 // //[8; 16) data8 0x4006222BAE0B793B // C01 data8 0x4002452733473EDA // C11 data8 0xC0010EF3326FDDB3 // C41 data8 0xC01492B817F99C0F // C51 data8 0x40099C905A249B75 // C20 data8 0x4012B972AE0E533D // C30 data8 0x3FE6F6DB91D0D4CC // An data8 0x4041852200000000 // overflow boundary data8 0x3FF545828F7B73C5 // C21 data8 0xBFBBD210578764DF // C31 data8 0x4000542098F53CFC // C00 data8 0x40032C1309AD6C81 // C10 data8 0x401D7331E19BD2E1 // C40 data8 0x402A06807295EF57 // C50 // //[16; 24) data8 0x4000131002867596 // C01 data8 0x3FFAA362D5D1B6F2 // C11 data8 0xBFFCB6985697DB6D // C41 data8 0xC0115BEE3BFC3B3B // C51 data8 0x3FFE62FF83456F73 // C20 data8 0x4007E33478A114C4 // C30 data8 0x41E9B2B73795ED57 // An data8 0x4041852200000000 // overflow boundary data8 0x3FEEB1F345BC2769 // C21 data8 0xBFC3BBE6E7F3316F // C31 data8 0x3FF14E07DA5E9983 // C00 data8 0x3FF53B76BF81E2C0 // C10 data8 0x4014051E0269A3DC // C40 data8 0x40229D4227468EDB // C50 // //[24; 32) data8 0x3FFAF7BD498384DE // C01 data8 0x3FF62AD8B4D1C3D2 // C11 data8 0xBFFABCADCD004C32 // C41 data8 0xC00FADE97C097EC9 // C51 data8 0x3FF6DA9ED737707E // C20 data8 0x4002A29E9E0C782C // C30 data8 0x44329D5B5167C6C3 // An data8 0x4041852200000000 // overflow boundary data8 0x3FE8943CBBB4B727 // C21 data8 0xBFCB39D466E11756 // C31 data8 0x3FE879AF3243D8C1 // C00 data8 0x3FEEC7DEBB14CE1E // C10 data8 0x401017B79BA80BCB // C40 data8 0x401E941DC3C4DE80 // C50 // //[32; 40) data8 0x3FF7ECB3A0E8FE5C // C01 data8 0x3FF3815A8516316B // C11 data8 0xBFF9ABD8FCC000C3 // C41 data8 0xC00DD89969A4195B // C51 data8 0x3FF2E43139CBF563 // C20 data8 0x3FFF96DC3474A606 // C30 data8 0x46AFF4CA9B0DDDF0 // An data8 0x4041852200000000 // overflow boundary data8 0x3FE4CE76DA1B5783 // C21 data8 0xBFD0524DB460BC4E // C31 data8 0x3FE35852DF14E200 // C00 data8 0x3FE8C7610359F642 // C10 data8 0x400BCF750EC16173 // C40 data8 0x401AC14E02EA701C // C50 // //[40; 48) data8 0x3FF5DCE4D8193097 // C01 data8 0x3FF1B0D8C4974FFA // C11 data8 0xBFF8FB450194CAEA // C41 data8 0xC00C9658E030A6C4 // C51 data8 0x3FF068851118AB46 // C20 data8 0x3FFBF7C7BB46BF7D // C30 data8 0x3FF0000000000000 // An data8 0x4041852200000000 // overflow boundary data8 0x3FE231DEB11D847A // C21 data8 0xBFD251ECAFD7E935 // C31 data8 0x3FE0368AE288F6BF // C00 data8 0x3FE513AE4215A70C // C10 data8 0x4008F960F7141B8B // C40 data8 0x40183BA08134397B // C50 // //[1.0; 1.25) data8 0xBFD9909648921868 // A7 data8 0x3FE96FFEEEA8520F // A6 data8 0xBFED0800D93449B8 // A3 data8 0x3FEFA648D144911C // A2 data8 0xBFEE3720F7720B4D // A5 data8 0x3FEF4857A010CA3B // A4 data8 0xBFE2788CCD545AA4 // A1 data8 0x3FEFFFFFFFE9209E // A0 // //[1.25; 1.5) data8 0xBFB421236426936C // A7 data8 0x3FAF237514F36691 // A6 data8 0xBFC0BADE710A10B9 // A3 data8 0x3FDB6C5465BBEF1F // A2 data8 0xBFB7E7F83A546EBE // A5 data8 0x3FC496A01A545163 // A4 data8 0xBDEE86A39D8452EB // A1 data8 0x3FEC56DC82A39AA2 // A0 // //[1.5; 1.75) data8 0xBF94730B51795867 // A7 data8 0x3FBF4203E3816C7B // A6 data8 0xBFE85B427DBD23E4 // A3 data8 0x3FEE65557AB26771 // A2 data8 0xBFD59D31BE3AB42A // A5 data8 0x3FE3C90CC8F09147 // A4 data8 0xBFE245971DF735B8 // A1 data8 0x3FEFFC613AE7FBC8 // A0 // //[1.75; 2.0) data8 0xBF7746A85137617E // A7 data8 0x3FA96E37D09735F3 // A6 data8 0xBFE3C24AC40AC0BB // A3 data8 0x3FEC56A80A977CA5 // A2 data8 0xBFC6F0E707560916 // A5 data8 0x3FDB262D949175BE // A4 data8 0xBFE1C1AEDFB25495 // A1 data8 0x3FEFEE1E644B2022 // A0 // // sin(pi*x)/pi data8 0xC026FB0D377656CC // S01 data8 0x3FFFB15F95A22324 // S11 data8 0x406CE58F4A41C6E7 // S10 data8 0x404453786302C61E // S20 data8 0xC023D59A47DBFCD3 // S21 data8 0x405541D7ABECEFCA // S00 // // 1/An for [40; 48) data8 0xCAA7576DE621FCD5, 0x3F68 LOCAL_OBJECT_END(tgammaf_data) //============================================================== // Code //============================================================== .section .text GLOBAL_LIBM_ENTRY(tgammaf) { .mfi getf.exp GR_SignExp = f8 fma.s1 FR_NormX = f8,f1,f0 addl GR_ad_Data = @ltoff(tgammaf_data), gp } { .mfi mov GR_ExpOf05 = 0xFFFE fcvt.fx.trunc.s1 FR_iXt = f8 // [x] mov GR_Offs = 0 // 2 <= x < 8 };; { .mfi getf.d GR_Arg = f8 fcmp.lt.s1 p14,p15 = f8,f0 mov GR_Tbl12Offs = 0 } { .mfi setf.exp FR_05 = GR_ExpOf05 fma.s1 FR_2 = f1,f1,f1 // 2 mov GR_Correction = 0 };; { .mfi ld8 GR_ad_Data = [GR_ad_Data] fclass.m p10,p0 = f8,0x1E7 // is x NaTVal, NaN, +/-0 or +/-INF? tbit.z p12,p13 = GR_SignExp,16 // p13 if |x| >= 2 } { .mfi mov GR_ExpOf1 = 0xFFFF fcvt.fx.s1 FR_rs = f8 // round(x) and GR_Exp2Ind = 7,GR_SignExp };; .pred.rel "mutex",p14,p15 { .mfi (p15) cmp.eq.unc p11,p0 = GR_ExpOf1,GR_SignExp // p11 if 1 <= x < 2 (p14) fma.s1 FR_1mX = f1,f1,f8 // 1 - |x| mov GR_Sig = 0 // if |x| < 2 } { .mfi (p13) cmp.eq.unc p7,p0 = 2,GR_Exp2Ind (p15) fms.s1 FR_1mX = f1,f1,f8 // 1 - |x| (p13) cmp.eq.unc p8,p0 = 3,GR_Exp2Ind };; .pred.rel "mutex",p7,p8 { .mfi (p7) mov GR_Offs = 0x7 // 8 <= |x| < 16 nop.f 0 (p8) tbit.z.unc p0,p6 = GR_Arg,51 } { .mib (p13) cmp.lt.unc p9,p0 = 3,GR_Exp2Ind (p8) mov GR_Offs = 0xE // 16 <= |x| < 32 // jump if x is NaTVal, NaN, +/-0 or +/-INF? (p10) br.cond.spnt tgammaf_spec_args };; .pred.rel "mutex",p14,p15 .pred.rel "mutex",p6,p9 { .mfi (p9) mov GR_Offs = 0x1C // 32 <= |x| (p14) fma.s1 FR_X2mX = FR_NormX,FR_NormX,FR_NormX // x^2-|x| (p9) tbit.z.unc p0,p8 = GR_Arg,50 } { .mfi ldfpd FR_LocalMin,FR_10 = [GR_ad_Data],16 (p15) fms.s1 FR_X2mX = FR_NormX,FR_NormX,FR_NormX // x^2-|x| (p6) add GR_Offs = 0x7,GR_Offs // 24 <= x < 32 };; .pred.rel "mutex",p8,p12 { .mfi add GR_ad_Ce = 0x50,GR_ad_Data (p15) fcmp.lt.unc.s1 p10,p0 = f8,f1 // p10 if 0 <= x < 1 mov GR_OvfNzBound = 2 } { .mib ldfpd FR_S32,FR_S31 = [GR_ad_Data],16 (p8) add GR_Offs = 0x7,GR_Offs // 40 <= |x| // jump if 1 <= x < 2 (p11) br.cond.spnt tgammaf_from_1_to_2 };; { .mfi shladd GR_ad_Ce = GR_Offs,4,GR_ad_Ce fcvt.xf FR_Xt = FR_iXt // [x] (p13) cmp.eq.unc p7,p0 = r0,GR_Offs // p7 if 2 <= |x| < 8 } { .mfi shladd GR_ad_Co = GR_Offs,4,GR_ad_Data fma.s1 FR_6 = FR_2,FR_2,FR_2 mov GR_ExpOf05 = 0x7FC };; { .mfi (p13) getf.sig GR_Sig = FR_iXt // if |x| >= 2 frcpa.s1 FR_Rcp0,p0 = f1,FR_NormX (p10) shr GR_Arg = GR_Arg,51 } { .mib ldfpd FR_C01,FR_C11 = [GR_ad_Co],16 (p7) mov GR_Correction = 2 // jump if 0 < x < 1 (p10) br.cond.spnt tgammaf_from_0_to_1 };; { .mfi ldfpd FR_C21,FR_C31 = [GR_ad_Ce],16 fma.s1 FR_Rq2 = f1,f1,FR_1mX // 2 - |x| (p14) sub GR_Correction = r0,GR_Correction } { .mfi ldfpd FR_C41,FR_C51 = [GR_ad_Co],16 (p14) fcvt.xf FR_rs = FR_rs (p14) add GR_ad_SinO = 0x3A0,GR_ad_Data };; .pred.rel "mutex",p14,p15 { .mfi ldfpd FR_C00,FR_C10 = [GR_ad_Ce],16 nop.f 0 (p14) sub GR_Sig = GR_Correction,GR_Sig } { .mfi ldfpd FR_C20,FR_C30 = [GR_ad_Co],16 fma.s1 FR_Rq1 = FR_1mX,FR_2,FR_X2mX // (x-1)*(x-2) (p15) sub GR_Sig = GR_Sig,GR_Correction };; { .mfi (p14) ldfpd FR_S01,FR_S11 = [GR_ad_SinO],16 fma.s1 FR_Rq3 = FR_2,f1,FR_1mX // 3 - |x| and GR_RqDeg = 0x6,GR_Sig } { .mfi ldfpd FR_C40,FR_C50 = [GR_ad_Ce],16 (p14) fma.d.s0 FR_X = f0,f0,f8 // set deno flag mov GR_NanBound = 0x30016 // -2^23 };; .pred.rel "mutex",p14,p15 { .mfi (p14) add GR_ad_SinE = 0x3C0,GR_ad_Data (p15) fms.s1 FR_r = FR_NormX,f1,FR_Xt // r = x - [x] cmp.eq p8,p0 = 2,GR_RqDeg } { .mfi ldfpd FR_An,FR_OvfBound = [GR_ad_Co] (p14) fms.s1 FR_r = FR_Xt,f1,FR_NormX // r = |x - [x]| cmp.eq p9,p0 = 4,GR_RqDeg };; .pred.rel "mutex",p8,p9 { .mfi (p14) ldfpd FR_S21,FR_S00 = [GR_ad_SinE],16 (p8) fma.s1 FR_Rq0 = FR_2,f1,FR_1mX // (3-x) tbit.z p0,p6 = GR_Sig,0 } { .mfi (p14) ldfpd FR_S10,FR_S20 = [GR_ad_SinO],16 (p9) fma.s1 FR_Rq0 = FR_2,FR_2,FR_1mX // (5-x) cmp.eq p10,p0 = 6,GR_RqDeg };; { .mfi (p14) getf.s GR_Arg = f8 (p14) fcmp.eq.unc.s1 p13,p0 = FR_NormX,FR_Xt (p14) mov GR_ZeroResBound = 0xC22C // -43 } { .mfi (p14) ldfe FR_InvAn = [GR_ad_SinE] (p10) fma.s1 FR_Rq0 = FR_6,f1,FR_1mX // (7-x) cmp.eq p7,p0 = r0,GR_RqDeg };; { .mfi (p14) cmp.ge.unc p11,p0 = GR_SignExp,GR_NanBound fma.s1 FR_Rq2 = FR_Rq2,FR_6,FR_X2mX // (x-3)*(x-4) (p14) shl GR_ZeroResBound = GR_ZeroResBound,16 } { .mfb (p14) mov GR_OvfNzBound = 0x802 (p14) fms.s1 FR_rs = FR_rs,f1,FR_NormX // rs = round(x) - x // jump if x < -2^23 i.e. x is negative integer (p11) br.cond.spnt tgammaf_singularity };; { .mfi nop.m 0 (p7) fma.s1 FR_Rq1 = f0,f0,f1 (p14) shl GR_OvfNzBound = GR_OvfNzBound,20 } { .mfb nop.m 0 fma.s1 FR_Rq3 = FR_Rq3,FR_10,FR_X2mX // (x-5)*(x-6) // jump if x is negative integer such that -2^23 < x < 0 (p13) br.cond.spnt tgammaf_singularity };; { .mfi nop.m 0 fma.s1 FR_C01 = FR_C01,f1,FR_r (p14) mov GR_ExpOf05 = 0xFFFE } { .mfi (p14) cmp.eq.unc p7,p0 = GR_Arg,GR_OvfNzBound fma.s1 FR_C11 = FR_C11,f1,FR_r (p14) cmp.ltu.unc p11,p0 = GR_Arg,GR_OvfNzBound };; { .mfi nop.m 0 fma.s1 FR_C21 = FR_C21,f1,FR_r (p14) cmp.ltu.unc p9,p0 = GR_ZeroResBound,GR_Arg } { .mfb nop.m 0 fma.s1 FR_C31 = FR_C31,f1,FR_r // jump if argument is close to 0 negative (p11) br.cond.spnt tgammaf_overflow };; { .mfi nop.m 0 fma.s1 FR_C41 = FR_C41,f1,FR_r nop.i 0 } { .mfb nop.m 0 fma.s1 FR_C51 = FR_C51,f1,FR_r // jump if x is negative noninteger such that -2^23 < x < -43 (p9) br.cond.spnt tgammaf_underflow };; { .mfi nop.m 0 (p14) fma.s1 FR_rs2 = FR_rs,FR_rs,f0 nop.i 0 } { .mfb nop.m 0 (p14) fma.s1 FR_S01 = FR_rs,FR_rs,FR_S01 // jump if argument is 0x80200000 (p7) br.cond.spnt tgammaf_overflow_near0_bound };; { .mfi nop.m 0 (p6) fnma.s1 FR_Rq1 = FR_Rq1,FR_Rq0,f0 nop.i 0 } { .mfi nop.m 0 (p10) fma.s1 FR_Rq2 = FR_Rq2,FR_Rq3,f0 and GR_Sig = 0x7,GR_Sig };; { .mfi nop.m 0 fma.s1 FR_C01 = FR_C01,FR_r,FR_C00 nop.i 0 } { .mfi nop.m 0 fma.s1 FR_C11 = FR_C11,FR_r,FR_C10 cmp.eq p6,p7 = r0,GR_Sig // p6 if |x| from one of base intervals };; { .mfi nop.m 0 fma.s1 FR_C21 = FR_C21,FR_r,FR_C20 nop.i 0 } { .mfi nop.m 0 fma.s1 FR_C31 = FR_C31,FR_r,FR_C30 (p7) cmp.lt.unc p9,p0 = 2,GR_RqDeg };; { .mfi nop.m 0 (p14) fma.s1 FR_S11 = FR_rs,FR_rs,FR_S11 nop.i 0 } { .mfi nop.m 0 (p14) fma.s1 FR_S21 = FR_rs,FR_rs,FR_S21 nop.i 0 };; { .mfi nop.m 0 fma.s1 FR_C41 = FR_C41,FR_r,FR_C40 nop.i 0 } { .mfi nop.m 0 (p14) fma.s1 FR_S32 = FR_rs2,FR_S32,FR_S31 nop.i 0 };; { .mfi nop.m 0 (p9) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq2,f0 nop.i 0 } { .mfi nop.m 0 fma.s1 FR_C51 = FR_C51,FR_r,FR_C50 nop.i 0 };; { .mfi (p14) getf.exp GR_SignExp = FR_rs fma.s1 FR_C01 = FR_C01,FR_C11,f0 nop.i 0 } { .mfi nop.m 0 (p14) fma.s1 FR_S01 = FR_S01,FR_rs2,FR_S00 nop.i 0 };; { .mfi nop.m 0 fma.s1 FR_C21 = FR_C21,FR_C31,f0 nop.i 0 } { .mfi nop.m 0 // NR-iteration (p14) fnma.s1 FR_InvNormX1 = FR_Rcp0,FR_NormX,f1 nop.i 0 };; { .mfi nop.m 0 (p14) fma.s1 FR_S11 = FR_S11,FR_rs2,FR_S10 (p14) tbit.z.unc p11,p12 = GR_SignExp,17 } { .mfi nop.m 0 (p14) fma.s1 FR_S21 = FR_S21,FR_rs2,FR_S20 nop.i 0 };; { .mfi nop.m 0 (p15) fcmp.lt.unc.s1 p0,p13 = FR_NormX,FR_OvfBound nop.i 0 } { .mfi nop.m 0 (p14) fma.s1 FR_S32 = FR_rs2,FR_S32,f0 nop.i 0 };; { .mfi nop.m 0 fma.s1 FR_C41 = FR_C41,FR_C51,f0 nop.i 0 } { .mfi nop.m 0 (p7) fma.s1 FR_An = FR_Rq1,FR_An,f0 nop.i 0 };; { .mfb nop.m 0 nop.f 0 // jump if x > 35.04010009765625 (p13) br.cond.spnt tgammaf_overflow };; { .mfi nop.m 0 // NR-iteration (p14) fma.s1 FR_InvNormX1 = FR_Rcp0,FR_InvNormX1,FR_Rcp0 nop.i 0 };; { .mfi nop.m 0 (p14) fma.s1 FR_S01 = FR_S01,FR_S11,f0 nop.i 0 };; { .mfi nop.m 0 (p14) fma.s1 FR_S21 = FR_S21,FR_S32,f0 nop.i 0 };; { .mfi (p14) getf.exp GR_SignExp = FR_NormX fma.s1 FR_C01 = FR_C01,FR_C21,f0 nop.i 0 } { .mfi nop.m 0 fma.s1 FR_C41 = FR_C41,FR_An,f0 (p14) mov GR_ExpOf1 = 0x2FFFF };; { .mfi nop.m 0 // NR-iteration (p14) fnma.s1 FR_InvNormX2 = FR_InvNormX1,FR_NormX,f1 nop.i 0 };; .pred.rel "mutex",p11,p12 { .mfi nop.m 0 (p12) fnma.s1 FR_S01 = FR_S01,FR_S21,f0 nop.i 0 } { .mfi nop.m 0 (p11) fma.s1 FR_S01 = FR_S01,FR_S21,f0 nop.i 0 };; { .mfi nop.m 0 (p14) fma.s1 FR_GAMMA = FR_C01,FR_C41,f0 (p14) tbit.z.unc p6,p7 = GR_Sig,0 } { .mfb nop.m 0 (p15) fma.s.s0 f8 = FR_C01,FR_C41,f0 (p15) br.ret.spnt b0 // exit for positives };; .pred.rel "mutex",p11,p12 { .mfi nop.m 0 (p12) fms.s1 FR_S01 = FR_rs,FR_S01,FR_rs nop.i 0 } { .mfi nop.m 0 (p11) fma.s1 FR_S01 = FR_rs,FR_S01,FR_rs nop.i 0 };; { .mfi nop.m 0 // NR-iteration fma.s1 FR_InvNormX2 = FR_InvNormX1,FR_InvNormX2,FR_InvNormX1 cmp.eq p10,p0 = 0x23,GR_Offs };; .pred.rel "mutex",p6,p7 { .mfi nop.m 0 (p6) fma.s1 FR_GAMMA = FR_S01,FR_GAMMA,f0 cmp.gtu p8,p0 = GR_SignExp,GR_ExpOf1 } { .mfi nop.m 0 (p7) fnma.s1 FR_GAMMA = FR_S01,FR_GAMMA,f0 cmp.eq p9,p0 = GR_SignExp,GR_ExpOf1 };; { .mfi nop.m 0 // NR-iteration fnma.s1 FR_InvNormX1 = FR_InvNormX2,FR_NormX,f1 nop.i 0 } { .mfi nop.m 0 (p10) fma.s1 FR_InvNormX2 = FR_InvNormX2,FR_InvAn,f0 nop.i 0 };; { .mfi nop.m 0 frcpa.s1 FR_Rcp0,p0 = f1,FR_GAMMA nop.i 0 };; { .mfi nop.m 0 fms.s1 FR_Multplr = FR_NormX,f1,f1 // x - 1 nop.i 0 };; { .mfi nop.m 0 // NR-iteration fnma.s1 FR_Rcp1 = FR_Rcp0,FR_GAMMA,f1 nop.i 0 };; .pred.rel "mutex",p8,p9 { .mfi nop.m 0 // 1/x or 1/(An*x) (p8) fma.s1 FR_Multplr = FR_InvNormX2,FR_InvNormX1,FR_InvNormX2 nop.i 0 } { .mfi nop.m 0 (p9) fma.s1 FR_Multplr = f1,f1,f0 nop.i 0 };; { .mfi nop.m 0 // NR-iteration fma.s1 FR_Rcp1 = FR_Rcp0,FR_Rcp1,FR_Rcp0 nop.i 0 };; { .mfi nop.m 0 // NR-iteration fnma.s1 FR_Rcp2 = FR_Rcp1,FR_GAMMA,f1 nop.i 0 } { .mfi nop.m 0 // NR-iteration fma.s1 FR_Rcp1 = FR_Rcp1,FR_Multplr,f0 nop.i 0 };; { .mfb nop.m 0 fma.s.s0 f8 = FR_Rcp1,FR_Rcp2,FR_Rcp1 br.ret.sptk b0 };; // here if 0 < x < 1 //-------------------------------------------------------------------- .align 32 tgammaf_from_0_to_1: { .mfi cmp.lt p7,p0 = GR_Arg,GR_ExpOf05 // NR-iteration fnma.s1 FR_Rcp1 = FR_Rcp0,FR_NormX,f1 cmp.eq p8,p0 = GR_Arg,GR_ExpOf05 } { .mfi cmp.gt p9,p0 = GR_Arg,GR_ExpOf05 fma.s1 FR_r = f0,f0,FR_NormX // reduced arg for (0;1) mov GR_ExpOf025 = 0x7FA };; { .mfi getf.s GR_ArgNz = f8 fma.d.s0 FR_X = f0,f0,f8 // set deno flag shl GR_OvfNzBound = GR_OvfNzBound,20 } { .mfi (p8) mov GR_Tbl12Offs = 0x80 // 0.5 <= x < 0.75 nop.f 0 (p7) cmp.ge.unc p6,p0 = GR_Arg,GR_ExpOf025 };; .pred.rel "mutex",p6,p9 { .mfi (p9) mov GR_Tbl12Offs = 0xC0 // 0.75 <= x < 1 nop.f 0 (p6) mov GR_Tbl12Offs = 0x40 // 0.25 <= x < 0.5 } { .mfi add GR_ad_Ce = 0x2C0,GR_ad_Data nop.f 0 add GR_ad_Co = 0x2A0,GR_ad_Data };; { .mfi add GR_ad_Co = GR_ad_Co,GR_Tbl12Offs nop.f 0 cmp.lt p12,p0 = GR_ArgNz,GR_OvfNzBound } { .mib add GR_ad_Ce = GR_ad_Ce,GR_Tbl12Offs cmp.eq p7,p0 = GR_ArgNz,GR_OvfNzBound // jump if argument is 0x00200000 (p7) br.cond.spnt tgammaf_overflow_near0_bound };; { .mmb ldfpd FR_A7,FR_A6 = [GR_ad_Co],16 ldfpd FR_A5,FR_A4 = [GR_ad_Ce],16 // jump if argument is close to 0 positive (p12) br.cond.spnt tgammaf_overflow };; { .mfi ldfpd FR_A3,FR_A2 = [GR_ad_Co],16 // NR-iteration fma.s1 FR_Rcp1 = FR_Rcp0,FR_Rcp1,FR_Rcp0 nop.i 0 } { .mfb ldfpd FR_A1,FR_A0 = [GR_ad_Ce],16 nop.f 0 br.cond.sptk tgamma_from_0_to_2 };; // here if 1 < x < 2 //-------------------------------------------------------------------- .align 32 tgammaf_from_1_to_2: { .mfi add GR_ad_Co = 0x2A0,GR_ad_Data fms.s1 FR_r = f0,f0,FR_1mX shr GR_TblOffs = GR_Arg,47 } { .mfi add GR_ad_Ce = 0x2C0,GR_ad_Data nop.f 0 mov GR_TblOffsMask = 0x18 };; { .mfi nop.m 0 nop.f 0 and GR_TblOffs = GR_TblOffs,GR_TblOffsMask };; { .mfi shladd GR_ad_Co = GR_TblOffs,3,GR_ad_Co nop.f 0 nop.i 0 } { .mfi shladd GR_ad_Ce = GR_TblOffs,3,GR_ad_Ce nop.f 0 cmp.eq p6,p7 = 8,GR_TblOffs };; { .mmi ldfpd FR_A7,FR_A6 = [GR_ad_Co],16 ldfpd FR_A5,FR_A4 = [GR_ad_Ce],16 nop.i 0 };; { .mmi ldfpd FR_A3,FR_A2 = [GR_ad_Co],16 ldfpd FR_A1,FR_A0 = [GR_ad_Ce],16 nop.i 0 };; .align 32 tgamma_from_0_to_2: { .mfi nop.m 0 (p6) fms.s1 FR_r = FR_r,f1,FR_LocalMin nop.i 0 };; { .mfi nop.m 0 // NR-iteration (p10) fnma.s1 FR_Rcp2 = FR_Rcp1,FR_NormX,f1 nop.i 0 };; { .mfi nop.m 0 fms.s1 FR_r2 = FR_r,FR_r,f0 nop.i 0 };; { .mfi nop.m 0 fma.s1 FR_A7 = FR_A7,FR_r,FR_A6 nop.i 0 } { .mfi nop.m 0 fma.s1 FR_A5 = FR_A5,FR_r,FR_A4 nop.i 0 };; { .mfi nop.m 0 fma.s1 FR_A3 = FR_A3,FR_r,FR_A2 nop.i 0 } { .mfi nop.m 0 fma.s1 FR_A1 = FR_A1,FR_r,FR_A0 nop.i 0 };; { .mfi nop.m 0 // NR-iteration (p10) fma.s1 FR_Rcp2 = FR_Rcp1,FR_Rcp2,FR_Rcp1 nop.i 0 };; { .mfi nop.m 0 fma.s1 FR_A7 = FR_A7,FR_r2,FR_A5 nop.i 0 } { .mfi nop.m 0 fma.s1 FR_r4 = FR_r2,FR_r2,f0 nop.i 0 };; { .mfi nop.m 0 fma.s1 FR_A3 = FR_A3,FR_r2,FR_A1 nop.i 0 };; { .mfi nop.m 0 (p10) fma.s1 FR_GAMMA = FR_A7,FR_r4,FR_A3 nop.i 0 } { .mfi nop.m 0 (p11) fma.s.s0 f8 = FR_A7,FR_r4,FR_A3 nop.i 0 };; { .mfb nop.m 0 (p10) fma.s.s0 f8 = FR_GAMMA,FR_Rcp2,f0 br.ret.sptk b0 };; // overflow //-------------------------------------------------------------------- .align 32 tgammaf_overflow_near0_bound: .pred.rel "mutex",p14,p15 { .mfi mov GR_fpsr = ar.fpsr nop.f 0 (p15) mov r8 = 0x7f8 } { .mfi nop.m 0 nop.f 0 (p14) mov r8 = 0xff8 };; { .mfi nop.m 0 nop.f 0 shl r8 = r8,20 };; { .mfi sub r8 = r8,r0,1 nop.f 0 extr.u GR_fpsr = GR_fpsr,10,2 // rounding mode };; .pred.rel "mutex",p14,p15 { .mfi // set p8 to 0 in case of overflow and to 1 otherwise // for negative arg: // no overflow if rounding mode either Z or +Inf, i.e. // GR_fpsr > 1 (p14) cmp.lt p8,p0 = 1,GR_fpsr nop.f 0 // for positive arg: // no overflow if rounding mode either Z or -Inf, i.e. // (GR_fpsr & 1) == 0 (p15) tbit.z p0,p8 = GR_fpsr,0 };; { .mib (p8) setf.s f8 = r8 // set result to 0x7f7fffff without // OVERFLOW flag raising nop.i 0 (p8) br.ret.sptk b0 };; .align 32 tgammaf_overflow: { .mfi nop.m 0 nop.f 0 mov r8 = 0x1FFFE };; { .mfi setf.exp f9 = r8 fmerge.s FR_X = f8,f8 nop.i 0 };; .pred.rel "mutex",p14,p15 { .mfi nop.m 0 (p14) fnma.s.s0 f8 = f9,f9,f0 // set I,O and -INF result mov GR_TAG = 261 // overflow } { .mfb nop.m 0 (p15) fma.s.s0 f8 = f9,f9,f0 // set I,O and +INF result br.cond.sptk tgammaf_libm_err };; // x is negative integer or +/-0 //-------------------------------------------------------------------- .align 32 tgammaf_singularity: { .mfi nop.m 0 fmerge.s FR_X = f8,f8 mov GR_TAG = 262 // negative } { .mfb nop.m 0 frcpa.s0 f8,p0 = f0,f0 br.cond.sptk tgammaf_libm_err };; // x is negative noninteger with big absolute value //-------------------------------------------------------------------- .align 32 tgammaf_underflow: { .mfi mov r8 = 0x00001 nop.f 0 tbit.z p6,p7 = GR_Sig,0 };; { .mfi setf.exp f9 = r8 nop.f 0 nop.i 0 };; .pred.rel "mutex",p6,p7 { .mfi nop.m 0 (p6) fms.s.s0 f8 = f9,f9,f9 nop.i 0 } { .mfb nop.m 0 (p7) fma.s.s0 f8 = f9,f9,f9 br.ret.sptk b0 };; // x for natval, nan, +/-inf or +/-0 //-------------------------------------------------------------------- .align 32 tgammaf_spec_args: { .mfi nop.m 0 fclass.m p6,p0 = f8,0x1E1 // Test x for natval, nan, +inf nop.i 0 };; { .mfi nop.m 0 fclass.m p7,p8 = f8,0x7 // +/-0 nop.i 0 };; { .mfi nop.m 0 fmerge.s FR_X = f8,f8 nop.i 0 } { .mfb nop.m 0 (p6) fma.s.s0 f8 = f8,f1,f8 (p6) br.ret.spnt b0 };; .pred.rel "mutex",p7,p8 { .mfi (p7) mov GR_TAG = 262 // negative (p7) frcpa.s0 f8,p0 = f1,f8 nop.i 0 } { .mib nop.m 0 nop.i 0 (p8) br.cond.spnt tgammaf_singularity };; .align 32 tgammaf_libm_err: { .mfi alloc r32 = ar.pfs,1,4,4,0 nop.f 0 mov GR_Parameter_TAG = GR_TAG };; GLOBAL_LIBM_END(tgammaf) LOCAL_LIBM_ENTRY(__libm_error_region) .prologue { .mfi add GR_Parameter_Y=-32,sp // Parameter 2 value nop.f 0 .save ar.pfs,GR_SAVE_PFS mov GR_SAVE_PFS=ar.pfs // Save ar.pfs } { .mfi .fframe 64 add sp=-64,sp // Create new stack nop.f 0 mov GR_SAVE_GP=gp // Save gp };; { .mmi stfs [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack add GR_Parameter_X = 16,sp // Parameter 1 address .save b0, GR_SAVE_B0 mov GR_SAVE_B0=b0 // Save b0 };; .body { .mib stfs [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address nop.b 0 } { .mib stfs [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack add GR_Parameter_Y = -16,GR_Parameter_Y br.call.sptk b0=__libm_error_support# // Call error handling function };; { .mmi nop.m 0 nop.m 0 add GR_Parameter_RESULT = 48,sp };; { .mmi ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack .restore sp add sp = 64,sp // Restore stack pointer mov b0 = GR_SAVE_B0 // Restore return address };; { .mib mov gp = GR_SAVE_GP // Restore gp mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs br.ret.sptk b0 // Return };; LOCAL_LIBM_END(__libm_error_region) .type __libm_error_support#,@function .global __libm_error_support#