.file "tanh.s" // Copyright (c) 2001 - 2005, Intel Corporation // All rights reserved. // // Contributed 2001 by the Intel Numerics Group, Intel Corporation // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm. // // History //============================================================================== // 05/30/01 Initial version // 12/04/01 Rewritten version with erf-like algorithm. // Performance improved. // 05/20/02 Cleaned up namespace and sf0 syntax // 08/14/02 Changed mli templates to mlx // 02/10/03 Reordered header: .section, .global, .proc, .align // 03/31/05 Reformatted delimiters between data tables // // API //============================================================================== // double tanh(double) // // Overview of operation //============================================================================== // // Algorithm description // --------------------- // // There are 4 paths: // // 1. Special path: x = 0, Inf, NaNs, denormals // Return tanh(x) = +/-0.0 for zeros // Return tanh(x) = QNaN for NaNs // Return tanh(x) = sign(x)*1.0 for Inf // Return tanh(x) = x + x^2 for - denormals // Return tanh(x) = x - x^2 for + denormals // // 2. Near zero path: 0.0 < |x| < 0.25 // Return tanh(x) = x + x^3*A3 + ... + x^19*A19 // // 3. Main path: 0.25 <= |x| < 19.0625 // For several ranges of 0.25 <= |x| < 19.0625 // Return tanh(x) = sign(x)*(A0 + y*A1 + y^2*A2 + // + y^3*A3 + ... + y^19*A19) // where y = (|x|/a) - b // // For each range there is particular set of coefficients. // Below is the list of ranges: // 1/4 <= |x| < 1/2 a = 0.25, b = 1.0 // 1/2 <= |x| < 1.0 a = 0.5, b = 1.0 // 1.0 <= |x| < 2.0 a = 1.0, b = 1.0 // 2.0 <= |x| < 3.25 a = 2.0, b = 1.0 // 3.25 <= |x| < 4.0 a = 2.0, b = 2.0 // 4.0 <= |x| < 6.5 a = 4.0, b = 1.0 // 6.5 <= |x| < 8.0 a = 4.0, b = 2.0 // 8.0 <= |x| < 13.0 a = 8.0, b = 1.0 // 13.0 <= |x| < 16.0 a = 8.0, b = 2.0 // 16.0 <= |x| < 19.0625 a = 16.0, b = 1.0 // ( [3.25;4.0], [6.5;8.0], [13.0;16.0] subranges separated // for monotonicity issues resolve ) // // 4. Saturation path: 19.0625 <= |x| < +INF // Return tanh(x) = sign(x)*(1.0 - tiny_value) // (tiny_value ~ 2^(-63)) // // Registers used //============================================================================== // Floating Point registers used: // f8 = input, output // f32 -> f64 // // General registers used: // r32 -> r51, r2, r3 // // Predicate registers used: // p6, p8, p10, p11, p12, p14, p15 // p6 arg is zero, denormal or special IEEE // p8 to filter out case when signd(x) > 1.625 // p10 to filter out case when |x| < 0.25 // p11 to filter out case when signd(x) <= 1.625 // p12 to filter out case when |x| >= 19.0625 // p14 set to 1 for positive x // p15 set to 1 for negative x // Assembly macros //============================================================================== rDataPtr = r2 rDataPtr1 = r3 rBias = r33 rCoeffAddr3 = r34 rThreeAndQ = r35 rCoeffAddr2 = r36 rMask = r37 rArg = r38 rSignBit = r39 rAbsArg = r40 rSaturation = r41 rIndex = r42 rCoeffAddr1 = r43 rCoeffAddr4 = r44 rShiftedArg = r45 rShiftedArgMasked = r46 rBiasedExpOf4 = r47 rShiftedAbsArg = r48 rArgSgnd = r49 r1625Sgnd = r50 rTwo = r51 //============================================================================== fA0 = f32 fA1 = f33 fA2 = f34 fA3 = f35 fA4 = f36 fA5 = f37 fA6 = f38 fA7 = f39 fA8 = f40 fA9 = f41 fA10 = f42 fA11 = f43 fA12 = f44 fA13 = f45 fA14 = f46 fA15 = f47 fA16 = f48 fA17 = f49 fA18 = f50 fA19 = f51 fArgSqr = f52 fArgAbsNorm = f53 fSignumX = f54 fRes = f55 fThreeAndQ = f56 fArgAbs = f57 fTSqr = f58 fTQuadr = f59 fTDeg3 = f60 fTDeg7 = f61 fArgAbsNormSgn = f62 fTQuadrSgn = f63 fTwo = f64 // Data tables //============================================================================== RODATA .align 16 LOCAL_OBJECT_START(tanh_data) // CAUTION: The order of these table coefficients shouldn't be changed! // Main path coefficients: // Coefficients ##0..15 ("main" coefficient tables) // Polynomial coefficients for the tanh(x), 0.25 <= |x| < 0.5 data8 0xE9D218BC9A3FB55A, 0x00003FC7 //A19 data8 0xC8C0D38687F36EBA, 0x00003FCE //A18 data8 0xA2663E519FAC8A43, 0x0000BFD2 //A17 data8 0xD913F0490674B0DF, 0x00003FD3 //A16 data8 0xF75D84789DE0AE52, 0x00003FD6 //A15 data8 0xACB3C40EEF3A06F0, 0x0000BFD9 //A14 data8 0xEBD7F5DC02CFD5BA, 0x0000BFDB //A13 data8 0x8B52CDF66D709E2A, 0x00003FDF //A12 data8 0x9EC21F28E05C4A3E, 0x00003FE0 //A11 data8 0xC412B44D0176F3ED, 0x0000BFE4 //A10 data8 0x97BF35A34DD1EA4C, 0x0000BFE0 //A9 data8 0xF89F5B39E3A3AA36, 0x00003FE9 //A8 data8 0xF2BA654BCEEBA433, 0x0000BFEA //A7 data8 0x8E1C15876AA589AD, 0x0000BFEF //A6 data8 0x942226246A8C2A86, 0x00003FF1 //A5 data8 0x8F06D9FF7DB47261, 0x00003FF4 //A4 // // Polynomial coefficients for the tanh(x), 0.5 <= |x| < 1.0 data8 0xC4A7B8FB672A8520, 0x00003FDC //A19 data8 0xA20724B847E13499, 0x0000BFE0 //A18 data8 0xE17DB53F02E4D340, 0x00003FE2 //A17 data8 0x90264A1012F4CA6F, 0x0000BFE4 //A16 data8 0xEBEC9F776F0BF415, 0x0000BFE0 //A15 data8 0x89AF912B305B45A4, 0x00003FE7 //A14 data8 0xB4A960B81F5EC36A, 0x0000BFE7 //A13 data8 0x969A4E95B2DA86B5, 0x0000BFEA //A12 data8 0x8A3FC0EC082305CB, 0x00003FEC //A11 data8 0x83D7795BCBE24373, 0x00003FEC //A10 data8 0xDCBF42AEB82932EC, 0x0000BFEF //A9 data8 0x83318E61ECAFD804, 0x00003FF0 //A8 data8 0xEA4DE5746975A914, 0x00003FF2 //A7 data8 0xCE63E8FA6B96480B, 0x0000BFF4 //A6 data8 0xDF017BE0D4FE45D8, 0x0000BFF4 //A5 data8 0xA8A0C6E2226DF3CD, 0x00003FF8 //A4 // // Polynomial coefficients for the tanh(x), 1.0 <= |x| < 2.0 data8 0x8E89D2EBFDAA160B, 0x00003FE9 //A19 data8 0xDD9226310A272046, 0x0000BFEC //A18 data8 0xA038042D28B0D665, 0x00003FEF //A17 data8 0x8C04796F03516306, 0x0000BFF1 //A16 data8 0x9CD6A9CB4E90A2FD, 0x00003FF2 //A15 data8 0xC8980E166F5A84FD, 0x0000BFF2 //A14 data8 0x9ADFE65F56B7BCFD, 0x00003FED //A13 data8 0x8B11FDFB5D0A7B96, 0x00003FF4 //A12 data8 0x8209A125E829CBFA, 0x0000BFF5 //A11 data8 0xCF38AAC17B85BD76, 0x00003FF1 //A10 data8 0xD5C2E248D8AB99AB, 0x00003FF6 //A9 data8 0xE12BE2785727F2D6, 0x0000BFF7 //A8 data8 0x9FC9EF90F87BF1E2, 0x00003FF6 //A7 data8 0x9B02FE0DAF42C08F, 0x00003FF9 //A6 data8 0xBDACE06F531D9491, 0x0000BFFA //A5 data8 0xE3048AD1DB2F648C, 0x00003FF9 //A4 // // Polynomial coefficients for the tanh(x), 2.0 <= |x| < 3.25 data8 0x856EC3B0330A385A, 0x00003FEB //A19 data8 0xC641D69DAE2D429C, 0x0000BFF2 //A18 data8 0xC683EB0BE1343FFF, 0x00003FF5 //A17 data8 0xC358954224E4E823, 0x0000BFF7 //A16 data8 0xF813A8D6D396BC5F, 0x00003FF8 //A15 data8 0xE0ECDFED078D37D6, 0x0000BFF9 //A14 data8 0x950E4E619855E316, 0x00003FFA //A13 data8 0x8453B8F93370FB58, 0x0000BFFA //A12 data8 0xFDBA28430AEC95BA, 0x00003FF7 //A11 data8 0x9371AAC1FDB1E664, 0x00003FFA //A10 data8 0xAC972DA97782D88A, 0x0000BFFB //A9 data8 0xE18F47B10B9CE1BC, 0x00003FFB //A8 data8 0xAB7C81230BF13BC6, 0x0000BFFB //A7 data8 0xA6CAAD4A3E31A7D5, 0x0000BFF8 //A6 data8 0x9CABD76D1D5C3878, 0x00003FFC //A5 data8 0x92906D077941CAA9, 0x0000BFFD //A4 // // Polynomial coefficients for the tanh(x), 4.0 <= |x| < 6.5 data8 0x9232D19F71709AC9, 0x0000BFF5 //A19 data8 0x819E31323F5DD3F8, 0x00003FF8 //A18 data8 0xDA8E1CDB8D23DC29, 0x0000BFF9 //A17 data8 0xE97C7CD8FC0486D8, 0x00003FFA //A16 data8 0xB0C4AD234D88C9F2, 0x0000BFFB //A15 data8 0xC5989BFB28FDE267, 0x00003FFB //A14 data8 0x9B26520EC4EFEE8E, 0x0000BFFB //A13 data8 0xC4B6F758AD21E574, 0x00003FF9 //A12 data8 0xCC36E3FFA10D2CFF, 0x00003FFA //A11 data8 0x8738696FB06A5CED, 0x0000BFFC //A10 data8 0xD31981825BF39228, 0x00003FFC //A9 data8 0x82C58FB9BEE43992, 0x0000BFFD //A8 data8 0x88D5AAE49164B6F3, 0x00003FFD //A7 data8 0xF4CA0B968AF2DDE2, 0x0000BFFC //A6 data8 0xB99874B482BD17EE, 0x00003FFC //A5 data8 0xE93FB2F99431DC1D, 0x0000BFFB //A4 // // Polynomial coefficients for the tanh(x), 8.0 <= |x| < 13.0 data8 0xAAA9EB7EADA85CEC, 0x00003FF5 //A19 data8 0x980C80EE05A6BE78, 0x0000BFF8 //A18 data8 0x818DA9F5396390A5, 0x00003FFA //A17 data8 0x8D8CC21E23D8A6A2, 0x0000BFFB //A16 data8 0xE0EC19E55A886765, 0x00003FFB //A15 data8 0x8C11197A7E6244C5, 0x0000BFFC //A14 data8 0x901D2BF203C2F7F3, 0x00003FFC //A13 data8 0xFEACAEE66EE803E5, 0x0000BFFB //A12 data8 0xC684E4925E318C3F, 0x00003FFB //A11 data8 0x8A9D8A970565F28D, 0x0000BFFB //A10 data8 0xAE34C61DE5CEA4D4, 0x00003FFA //A9 data8 0xC44C5714BD6208A0, 0x0000BFF9 //A8 data8 0xC4612F7D6C8BDB79, 0x00003FF8 //A7 data8 0xABD91DCE40D5EECB, 0x0000BFF7 //A6 data8 0x80E375C1B847B72F, 0x00003FF6 //A5 data8 0xA11C7DD978CF700A, 0x0000BFF4 //A4 // // Polynomial coefficients for the tanh(x), 16.0 <= |x| < 19.0625 data8 0xE29D17C510F86F6B, 0x00003FF3 //A19 data8 0x88FE52EB39A3A98C, 0x0000BFF5 //A18 data8 0xA406547E50360693, 0x00003FF5 //A17 data8 0x83E6260B71C6D7DE, 0x0000BFF5 //A16 data8 0xA36AB5B0CBC97B85, 0x00003FF4 //A15 data8 0xA94931E0B7BA6C14, 0x0000BFF3 //A14 data8 0x9A4596DAF350AD63, 0x00003FF2 //A13 data8 0xFE47643F375AECA5, 0x0000BFF0 //A12 data8 0xBF8433C5ABEE63B1, 0x00003FEF //A11 data8 0x83CEE05D7AE90A0A, 0x0000BFEE //A10 data8 0xA4CC45480BCEB02D, 0x00003FEC //A9 data8 0xB967CBDCBC16CB10, 0x0000BFEA //A8 data8 0xB9681B214EDC098D, 0x00003FE8 //A7 data8 0xA23B20D87B80DFA8, 0x0000BFE6 //A6 data8 0xF358B2C46F10CBAF, 0x00003FE3 //A5 data8 0x98176FD06229A385, 0x0000BFE1 //A4 // // Binary subranges // Polynomial coefficients for the tanh(x), 3.25 <= |x| < 4.0 data8 0xEF2EE841288F6706, 0x00003FE9 //A19 data8 0xE65D5B74B85F82A6, 0x00003FEB //A18 data8 0xE495FC21E42A79FF, 0x00003FEA //A17 data8 0xF99B267A913CF3E5, 0x00003FEC //A16 data8 0xFE3D700F4A0A0FDE, 0x0000BFEC //A15 data8 0x8F91BB4EE4E4EA52, 0x00003FEE //A14 data8 0xBCA9F41A5C6EF8BA, 0x0000BFEE //A13 data8 0xF93E00884027A9CF, 0x00003FED //A12 data8 0xC4D4036A61BABC2F, 0x00003FEF //A11 data8 0x86CC2AD1AD47C7D5, 0x0000BFF2 //A10 data8 0xD3065DEF4CE9AD32, 0x00003FF3 //A9 data8 0x82C44125F568D54E, 0x0000BFF5 //A8 data8 0x88D588729BAF14CA, 0x00003FF6 //A7 data8 0xF4CA0661307243C7, 0x0000BFF6 //A6 data8 0xB998746D57061F74, 0x00003FF7 //A5 data8 0xE93FB2F482327C19, 0x0000BFF7 //A4 // // Polynomial coefficients for the tanh(x), 6.5 <= |x| < 8.0 data8 0xEB189B71ADC40BE2, 0x00003FEA //A19 data8 0xA60B46F9FF6DC2DF, 0x00003FEA //A18 data8 0xBB061CDD9F368B9D, 0x00003FEC //A17 data8 0x841E08BDF5429991, 0x0000BFEC //A16 data8 0xDD33990B433F25BE, 0x00003FED //A15 data8 0xBA5DE6B870F0A2BB, 0x0000BFEE //A14 data8 0xA71D489AAA6DACF0, 0x00003FEF //A13 data8 0x874CCB2B8F3FBC0E, 0x0000BFF0 //A12 data8 0xCB1D2E9754EA534A, 0x00003FF0 //A11 data8 0x8BA5ABB53BA6ABCF, 0x0000BFF1 //A10 data8 0xAE91FD1C2391A32B, 0x00003FF1 //A9 data8 0xC465A74B798E5761, 0x0000BFF1 //A8 data8 0xC4666152397D15C1, 0x00003FF1 //A7 data8 0xABD9E63CA575B950, 0x0000BFF1 //A6 data8 0x80E38B18E8D0F460, 0x00003FF1 //A5 data8 0xA11C80E20AAFDD3C, 0x0000BFF0 //A4 // // Polynomial coefficients for the tanh(x), 13.0 <= |x| < 16.0 data8 0xBECD0AF7E22E5594, 0x00003FE9 //A19 data8 0xE2834E2D68C1128C, 0x00003FEA //A18 data8 0x97B117611B317379, 0x00003FEB //A17 data8 0xEE91A0D39A772F6B, 0x00003FEA //A16 data8 0x92F6EC377DCADA4F, 0x00003FEA //A15 data8 0xD8FCCD6A3277FAB7, 0x00003FE8 //A14 data8 0xC15AB9CB0C3DCFE0, 0x00003FE7 //A13 data8 0xC3C659704A7147CD, 0x00003FE2 //A12 data8 0xFA17F09D27C97912, 0x00003FE4 //A11 data8 0xF664147182B94788, 0x0000BFE3 //A10 data8 0xA6C89FA741464DA1, 0x00003FE3 //A9 data8 0xB90FE464A825EFA8, 0x0000BFE2 //A8 data8 0xB973AE0FD86EC024, 0x00003FE1 //A7 data8 0xA23A087F96846951, 0x0000BFE0 //A6 data8 0xF358D8A7FC012D5D, 0x00003FDE //A5 data8 0x98176E2309B7C73A, 0x0000BFDD //A4 // // Coefficients ##16..19 ("tail" coefficient tables) // Polynomial coefficients for the tanh(x), 0.25 <= |x| < 0.5 data8 0x838F209ABB9BA7B3, 0x0000BFF7 //A3 data8 0xEBC0AC78DA4FC500, 0x0000BFF8 //A2 data8 0xF0A4D02960B60E69, 0x00003FFC //A1 data8 0xFACBF534D0E42F8A, 0x00003FFC //A0 // // Polynomial coefficients for the tanh(x), 0.5 <= |x| < 1.0 data8 0xC0ECBDC0A0D133A6, 0x0000BFF8 //A3 data8 0xBA13A076BF8E812F, 0x0000BFFB //A2 data8 0xC954A37D1A1CA070, 0x00003FFD //A1 data8 0xEC9A9EBAB4579B29, 0x00003FFD //A0 // // Polynomial coefficients for the tanh(x), 1.0 <= |x| < 2.0 data8 0xD42E9175A6EA1397, 0x00003FFB //A3 data8 0xA3C361378A55CF56, 0x0000BFFD //A2 data8 0xD706E07CC8622983, 0x00003FFD //A1 data8 0xC2F7D5A8A79CA2AC, 0x00003FFE //A0 // // Polynomial coefficients for the tanh(x), 2.0 <= |x| < 3.25 data8 0xAC7A7F8776817C7E, 0x00003FFD //A3 data8 0x8B7CE95E69FCFE9A, 0x0000BFFD //A2 data8 0x90B161317028D995, 0x00003FFC //A1 data8 0xF6CA82F0DE1E9E9A, 0x00003FFE //A0 // // Polynomial coefficients for the tanh(x), 4.0 <= |x| < 6.5 data8 0xE9E072407BC22DC6, 0x00003FFA //A3 data8 0xAFA4A913D8E6BB4A, 0x0000BFF9 //A2 data8 0xAFC2D6A885BAA875, 0x00003FF7 //A1 data8 0xFFD40B84505A10B2, 0x00003FFE //A0 // // Polynomial coefficients for the tanh(x), 8.0 <= |x| < 13.0 data8 0xA11C8A1FED168CD5, 0x00003FF2 //A3 data8 0xF1AAD6B02063A5F5, 0x0000BFEF //A2 data8 0xF1AADA46AD341C34, 0x00003FEC //A1 data8 0xFFFFFC39548FC34B, 0x00003FFE //A0 // // Polynomial coefficients for the tanh(x), 16.0 <= |x| < 19.0625 data8 0x98176FD1F0950C16, 0x00003FDE //A3 data8 0xE42327BB09C8B2A5, 0x0000BFDA //A2 data8 0xE42327BB0B154F13, 0x00003FD6 //A1 data8 0xFFFFFFFFFFF8DEE7, 0x00003FFE //A0 // // Binary subranges // Polynomial coefficients for the tanh(x), 3.25 <= |x| < 4.0 data8 0xE9E072404329293B, 0x00003FF7 //A3 data8 0xAFA4A913D798300B, 0x0000BFF7 //A2 data8 0xAFC2D6A885B48567, 0x00003FF6 //A1 data8 0xFFD40B84505A10B4, 0x00003FFE //A0 // // Polynomial coefficients for the tanh(x), 6.5 <= |x| < 8.0 data8 0xA11C8A63815F7A28, 0x00003FEF //A3 data8 0xF1AAD6B65B0EBF53, 0x0000BFED //A2 data8 0xF1AADA46E799831F, 0x00003FEB //A1 data8 0xFFFFFC39548FC348, 0x00003FFE //A0 // // Polynomial coefficients for the tanh(x), 13.0 <= |x| < 16.0 data8 0x98176FE982140A59, 0x00003FDB //A3 data8 0xE42327B9B0D7202F, 0x0000BFD8 //A2 data8 0xE42327BB13076BD6, 0x00003FD5 //A1 data8 0xFFFFFFFFFFF8DEE7, 0x00003FFE //A0 // // Polynomial coefficients for the tanh(x), 0.0 <= |x| < 0.25 // ('tanh_near_zero' path) data8 0xBF2BA5D26E479D0C //A9 data8 0x3F4336D96F81EE26 //A8 data8 0xBF8226E34AE197B0 //A5 data8 0x3F9664F488148657 //A4 data8 0xAAAAAAAAAAAAAA99, 0x0000BFFD //A1 data8 0xBF57D91925BB5EE2 //A7 data8 0x3F6D6D36C3D5B7A1 //A6 data8 0xBFABA1BA1BA19D32 //A3 data8 0x3FC1111111111108 //A2 // // 1.0 - 2^(-63) // ('tanh_saturation' path) data8 0xFFFFFFFFFFFFFFFF, 0x00003FFE LOCAL_OBJECT_END(tanh_data) // CAUTION: The order of table coefficients shouldn't be changed! .section .text GLOBAL_LIBM_ENTRY(tanh) { .mfi alloc r32 = ar.pfs, 0, 20, 0, 0 fmerge.se fArgAbsNorm = f1, f8 // normalized x adds rSignBit = 0x1, r0 // Bit for sign removing } { .mfi addl rDataPtr = @ltoff(tanh_data), gp // Data pointer fma.s1 fTwo = f1, f1, f1 // 2.0 construct addl rArgSgnd = 0xfff, r0 // mask for exponent };; { .mfi getf.d rArg = f8 // x in GR fclass.m p6,p0 = f8, 0xEF // Filter 0, denormals and specials // 0xEF = @qnan|@snan|@pos|@neg|@zero|@unorm|@inf shl rArgSgnd = rArgSgnd, 52 // mask for exponent } { .mlx ld8 rDataPtr = [rDataPtr] // Real data pointer movl r1625Sgnd = 0xA000000000000 // 1.625 signd // 1.625 significand used to filter values greater than 3.25, 6.5, 13.0 // to enter binary subranges };; { .mfi addl rBias = 0x3FD00, r0 // bias of 0.25 << 8 fma.s1 fArgSqr = f8, f8, f0 // x^2 shl rSignBit = rSignBit, 63 // mask for sign bit } { .mlx addl rMask = 0x7FF00, r0 // Mask for index bits movl rTwo = 0x4000000000000000 // 2.0 };; { .mfi andcm rArgSgnd = rArg, rArgSgnd // Remove exponent nop.f 0 shr.u rShiftedArg = rArg, 44 // Select only necessary bits of arg } { .mfb andcm rAbsArg = rArg, rSignBit // Remove sign nop.f 0 (p6) br.cond.spnt _tanh_spec // Branch to zero, denorm & specs };; { .mfi and rShiftedArgMasked = rShiftedArg, rMask // bias of x << 8 fmerge.s fArgAbs = f1, f8 // |x| shr rShiftedAbsArg = rAbsArg, 44 // Select only necessary // bits of absolute arg } { .mfi cmp.gt p8, p11 = rArgSgnd, r1625Sgnd // p8 = 1 if // signd(x) > 1.625 - to filter values greater than 3.25, 6.5, 13.0 nop.f 0 nop.i 0 };; { .mfi sub rIndex = rShiftedArgMasked, rBias // index << 8 nop.f 0 cmp.lt p10, p0 = rShiftedArgMasked, rBias // p10=1 if |x|<0.25 } { .mfb (p8) cmp.gt p8, p11 = rAbsArg, rTwo // If arg is greater than 2.0? // (then we should use binary subranges) nop.f 0 (p10) br.cond.spnt tanh_near_zero // branch out if |x| < 0.25 };; .pred.rel "mutex",p8,p11 { .mfi (p8) add rIndex = 0x400, rIndex // Make pointer to binary // subranges (p11) fms.s1 fArgAbsNorm = fArgAbsNorm, f1, f1 // |x|/b - 1.0 addl rSaturation = 0x40331, r0 // shifted bits of 19.0625 } { .mfi nop.m 0 (p8) fms.s1 fArgAbsNorm = fArgAbsNorm, f1, fTwo // |x|/b - 2.0 // this is only for binary subranges [3.25;4], [6.5;8], [13.0;16] nop.i 0 } ;; { .mfi add rCoeffAddr1 = rDataPtr, rIndex// coeff. ##0,2,..14 nop.f 0 nop.i 0 };; { .mfi adds rCoeffAddr2 = 16, rCoeffAddr1 // Shifted pointer to coeffs fmerge.s fSignumX = f8, f1 // signum(x) nop.i 0 } { .mfb cmp.le p12, p0 = rSaturation, rShiftedAbsArg // |x|>=19.0625? nop.f 0 (p12) br.cond.spnt tanh_saturation // branch out if x |x| >= 19.0625 };; {.mfi ldfe fA19 = [rCoeffAddr1], 32 // Load A19 nop.f 0 nop.i 0 } {.mfi ldfe fA18 = [rCoeffAddr2], 32 // Load A18 nop.f 0 adds rCoeffAddr3 = 0xA00, rDataPtr // Pointer to "tail" // coefficients tables };; {.mfi ldfe fA17 = [rCoeffAddr1], 32 // Load A17 nop.f 0 nop.i 0 } {.mfi ldfe fA16 = [rCoeffAddr2], 32 // Load A16 nop.f 0 nop.i 0 };; {.mfi ldfe fA15 = [rCoeffAddr1], 32 // Load A15 fma.s1 fTSqr = fArgAbsNorm, fArgAbsNorm, f0 // x^2 shr.u rIndex = rIndex, 2 // Index for "tail" tables } {.mfi ldfe fA14 = [rCoeffAddr2], 32 // Load A14 nop.f 0 adds rCoeffAddr4 = 16, r0 // Shifter pointer // to "tail" tables };; {.mfi ldfe fA13 = [rCoeffAddr1], 32 // Load A13 nop.f 0 add rCoeffAddr3 = rCoeffAddr3, rIndex // "tail" coeffs to load // ##16..23 } {.mfi ldfe fA12 = [rCoeffAddr2], 32 // Load A12 nop.f 0 cmp.lt p15, p14 = rArg, r0 // Arg positive (p14) // or negative (p15)? };; {.mfi ldfe fA11 = [rCoeffAddr1], 32 // Load A11 nop.f 0 add rCoeffAddr4 = rCoeffAddr3, rCoeffAddr4 // shifted "tail" // coeffs to load } {.mfi ldfe fA10 = [rCoeffAddr2], 32 // Load A10 nop.f 0 nop.i 0 };; {.mfi ldfe fA9 = [rCoeffAddr1], 32 // Load A9 nop.f 0 nop.i 0 } {.mfi ldfe fA8 = [rCoeffAddr2], 32 // Load A8 nop.f 0 nop.i 0 };; {.mfi ldfe fA7 = [rCoeffAddr1], 32 // Load A7 nop.f 0 nop.i 0 } {.mfi ldfe fA6 = [rCoeffAddr2], 32 // Load A6 nop.f 0 nop.i 0 };; {.mfi ldfe fA5 = [rCoeffAddr1], 32 // Load A5 fma.s1 fTDeg3 = fArgAbsNorm, fTSqr, f0 // x^3 nop.i 0 } {.mfi ldfe fA4 = [rCoeffAddr2], 32 // Load A4 fma.s1 fTQuadr = fTSqr, fTSqr, f0 // x^4 nop.i 0 };; // Path #3 Polynomial Pol19(y) computation; y = fArgAbsNorm {.mfi ldfe fA3 = [rCoeffAddr3], 32 // Load A3 fma.s1 fArgAbsNormSgn = fArgAbsNorm, fSignumX, f0 // sign(x)*x nop.i 0 } {.mfi ldfe fA2 = [rCoeffAddr4], 32 // Load A2 nop.f 0 nop.i 0 };; {.mfi ldfe fA1 = [rCoeffAddr3], 32 // Load A1 fma.s1 fRes = fA19, fArgAbsNorm, fA18 // Polynomial nop.i 0 } {.mfi ldfe fA0 = [rCoeffAddr4], 32 // Load A0 nop.f 0 nop.i 0 };; { .mfi nop.m 0 fma.s1 fA17 = fA17, fArgAbsNorm, fA16 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fA15 = fA15, fArgAbsNorm, fA14 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fTDeg7 = fTDeg3, fTQuadr, f0 // Polynomial nop.i 0 } { .mfi nop.m 0 fma.s1 fA13 = fA13, fArgAbsNorm, fA12 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fA11 = fA11, fArgAbsNorm, fA10 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fA9 = fA9, fArgAbsNorm, fA8 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fRes = fRes, fTSqr, fA17 // Polynomial nop.i 0 } { .mfi nop.m 0 fma.s1 fA7 = fA7, fArgAbsNorm, fA6 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fA5 = fA5, fArgAbsNorm, f0 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fA15 = fA15, fTSqr, fA13 // Polynomial nop.i 0 } { .mfi nop.m 0 fma.s1 fA4 = fA4, fArgAbsNorm, fA3 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fA2 = fA2, fArgAbsNorm, fA1 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fA11 = fA11, fTSqr, fA9 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fA7 = fA7, fTSqr, fA5 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fRes = fRes, fTQuadr, fA15 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fA4 = fA4, fTSqr, fA2 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fRes = fRes, fTQuadr, fA11 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fA4 = fA7, fTDeg3, fA4 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fRes = fRes, fTDeg7, fA4 // Polynomial nop.i 0 };; { .mfi nop.m 0 // result for negative argument (p15) fms.d.s0 f8 = fRes, fArgAbsNormSgn, fA0 // Polynomial nop.i 0 } { .mfb nop.m 0 // result for positive argument (p14) fma.d.s0 f8 = fRes, fArgAbsNormSgn, fA0 // Polynomial br.ret.sptk b0 };; // |x| < 0.25 Path ///////////////////////////////////////////////////////////// .align 32 tanh_near_zero: { .mfi adds rCoeffAddr1 = 0xC80, rDataPtr // address of A9 fma.s0 fTSqr = fArgSqr, fArgSqr, f0 // x^4 nop.i 0 } { .mfi adds rCoeffAddr2 = 0xCB0, rDataPtr // address of A7 nop.f 0 nop.i 0 };; { .mfi ldfpd fA9, fA8 = [rCoeffAddr1], 16 // Load A9, A8 nop.f 0 nop.i 0 } { .mfi ldfpd fA7, fA6 = [rCoeffAddr2], 16 // Load A7, A6 nop.f 0 nop.i 0 };; { .mfi ldfpd fA5, fA4 = [rCoeffAddr1], 16 // Load A5, A4 nop.f 0 nop.i 0 } { .mfi ldfpd fA3, fA2 = [rCoeffAddr2], 16 // Load A3, A2 nop.f 0 nop.i 0 };; { .mfi ldfe fA1 = [rCoeffAddr1] // Load A1 nop.f 0 nop.i 0 };; { .mfi nop.m 0 fma.s1 fTQuadr = fTSqr, fTSqr, f0 // x^4 nop.i 0 };; { .mfi nop.m 0 fma.s1 fRes = fA9, fArgSqr, fA8 // Polynomial nop.i 0 } { .mfi nop.m 0 fma.s1 fA7 = fA7, fArgSqr, fA6 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fA3 = fA3, fArgSqr, fA2 // Polynomial nop.i 0 } { .mfi nop.m 0 fma.s1 fA5 = fA5, fArgSqr, fA4 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fA1 = fA1, fArgSqr, f0 // Polynomial nop.i 0 } { .mfi nop.m 0 fma.s1 fTQuadrSgn = fTQuadr, f8, f0 // x^4 * x nop.i 0 };; { .mfi nop.m 0 fma.s1 fRes = fRes, fTSqr, fA7 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fA1 = fA3, fTSqr, fA1 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fRes = fRes, fTSqr, fA5 // Polynomial nop.i 0 };; { .mfi nop.m 0 fma.s1 fRes = fRes, fTQuadr, fA1 // Polynomial nop.i 0 };; { .mfb nop.m 0 fma.d.s0 f8 = fRes, f8, f8 // x+x*Polynomial br.ret.sptk b0 // Exit for |x| < 0.25 };; // 19.0625 <= |x| < +inf Saturation path /////////////////////////////////////// .align 32 tanh_saturation: { .mfi adds rDataPtr = 0xCD0, rDataPtr // address of A0 nop.f 0 nop.i 0 };; { .mfi ldfe fA0 = [rDataPtr] // Load A0 = 2^(-63) nop.f 0 nop.i 0 };; { .mfb nop.m 0 fma.d.s0 f8 = fA0, fSignumX, f0 // sign(x)*(1.0-2^(-63)) br.ret.sptk b0 // Exit for 19.0625 <=|x|< +inf };; // 0, denormals and special IEEE numbers path ///////////////////////////////// _tanh_spec: { .mfi cmp.lt p15, p14 = rArg, r0 // Is arg negative (p15) // or positive p14) fclass.m p6,p0 = f8, 0x23 // To filter infinities // 0x23 = @pos|@neg|@inf nop.i 0 };; { .mfi nop.m 0 fclass.m p7,p0 = f8, 0xC7 // To filter NaNs & Zeros // 0xC7 = @pos|@neg|@zero|@qnan|@snan nop.i 0 };; { .mfb nop.m 0 (p6) fmerge.s f8 = f8, f1 // +/-1 for INF args (p6) br.ret.spnt b0 // exit for x = INF };; { .mfb nop.m 0 (p7) fma.d.s0 f8 = f8, f1, f8 // +/-0 for 0 args // and NaNs for NaNs (p7) br.ret.spnt b0 // exit for x = NaN or +/-0 };; { .mfi nop.m 0 fnorm.s0 f8 = f8 // Normalize arg nop.i 0 };; .pred.rel "mutex",p14,p15 { .mfi nop.m 0 (p14) fnma.d.s0 f8 = f8, f8, f8 // res = r-r^2 nop.i 0 } { .mfb nop.m 0 (p15) fma.d.s0 f8 = f8, f8, f8 // res = r+r^2 br.ret.sptk b0 // 0, denormals, specials return };; GLOBAL_LIBM_END(tanh)