.file "tancotf.s" // Copyright (c) 2000 - 2005, Intel Corporation // All rights reserved. // // Contributed 2000 by the Intel Numerics Group, Intel Corporation // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm. // // History //============================================================== // 02/02/00 Initial version // 04/04/00 Unwind support added // 12/27/00 Improved speed // 02/21/01 Updated to call tanl // 05/30/02 Improved speed, added cotf. // 11/25/02 Added explicit completer on fnorm // 02/10/03 Reordered header: .section, .global, .proc, .align // 04/17/03 Eliminated redundant stop bits // 03/31/05 Reformatted delimiters between data tables // // APIs //============================================================== // float tanf(float) // float cotf(float) // // Algorithm Description for tanf //============================================================== // The tanf function computes the principle value of the tangent of x, // where x is radian argument. // // There are 5 paths: // 1. x = +/-0.0 // Return tanf(x) = +/-0.0 // // 2. x = [S,Q]NaN // Return tanf(x) = QNaN // // 3. x = +/-Inf // Return tanf(x) = QNaN // // 4. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is even, |r| f80 // // General registers used: // r14 -> r23, r32 -> r39 // // Predicate registers used: // p6 -> p13 // // Assembly macros //============================================================== // integer registers rExp = r14 rSignMask = r15 rRshf = r16 rScFctrExp = r17 rIntN = r18 rSigRcpPiby2 = r19 rScRshf = r20 rCoeffA = r21 rCoeffB = r22 rExpCut = r23 GR_SAVE_B0 = r33 GR_SAVE_PFS = r34 GR_SAVE_GP = r35 GR_Parameter_X = r36 GR_Parameter_Y = r37 GR_Parameter_RESULT = r38 GR_Parameter_Tag = r39 //============================================================== // floating point registers fScRcpPiby2 = f32 fScRshf = f33 fNormArg = f34 fScFctr = f35 fRshf = f36 fShiftedN = f37 fN = f38 fR = f39 fA01 = f40 fA03 = f41 fA05 = f42 fA07 = f43 fA09 = f44 fA11 = f45 fA13 = f46 fA15 = f47 fA17 = f48 fA19 = f49 fB01 = f50 fB03 = f51 fB05 = f52 fB07 = f53 fB09 = f54 fB11 = f55 fA03_01 = f56 fA07_05 = f57 fA11_09 = f58 fA15_13 = f59 fA19_17 = f60 fA11_05 = f61 fA19_13 = f62 fA19_05 = f63 fRbyA03_01 = f64 fB03_01 = f65 fB07_05 = f66 fB11_09 = f67 fB11_05 = f68 fRbyB03_01 = f69 fRbyB11_01 = f70 fRp2 = f71 fRp4 = f72 fRp8 = f73 fRp5 = f74 fY0 = f75 fY1 = f76 fD = f77 fDp2 = f78 fInvR = f79 fPiby2 = f80 //============================================================== RODATA .align 16 LOCAL_OBJECT_START(coeff_A) data8 0x3FF0000000000000 // A1 = 1.00000000000000000000e+00 data8 0x3FD5555556BCE758 // A3 = 3.33333334641442641606e-01 data8 0x3FC111105C2DAE48 // A5 = 1.33333249100689099175e-01 data8 0x3FABA1F876341060 // A7 = 5.39701122561673229739e-02 data8 0x3F965FB86D12A38D // A9 = 2.18495194027670719750e-02 data8 0x3F8265F62415F9D6 // A11 = 8.98353860497717439465e-03 data8 0x3F69E3AE64CCF58D // A13 = 3.16032468108912746342e-03 data8 0x3F63920D09D0E6F6 // A15 = 2.38897844840557235331e-03 LOCAL_OBJECT_END(coeff_A) LOCAL_OBJECT_START(coeff_B) data8 0xC90FDAA22168C235, 0x3FFF // pi/2 data8 0x3FD55555555358DB // B1 = 3.33333333326107426583e-01 data8 0x3F96C16C252F643F // B3 = 2.22222230621336129239e-02 data8 0x3F61566243AB3C60 // B5 = 2.11638633968606896785e-03 data8 0x3F2BC1169BD4438B // B7 = 2.11748132564551094391e-04 data8 0x3EF611B4CEA056A1 // B9 = 2.10467959860990200942e-05 data8 0x3EC600F9E32194BF // B11 = 2.62305891234274186608e-06 data8 0xBF42BA7BCC177616 // A17 =-5.71546981685324877205e-04 data8 0x3F4F2614BC6D3BB8 // A19 = 9.50584530849832782542e-04 LOCAL_OBJECT_END(coeff_B) .section .text LOCAL_LIBM_ENTRY(cotf) { .mlx getf.exp rExp = f8 // ***** Get 2ˆ17 * s + E movl rSigRcpPiby2= 0xA2F9836E4E44152A // significand of 2/Pi } { .mlx addl rCoeffA = @ltoff(coeff_A), gp movl rScRshf = 0x47e8000000000000 // 1.5*2^(63+63+1) } ;; { .mfi alloc r32 = ar.pfs, 0, 4, 4, 0 fclass.m p9, p0 = f8, 0xc3 // Test for x=nan cmp.eq p11, p10 = r0, r0 // if p11=1 we compute cotf } { .mib ld8 rCoeffA = [rCoeffA] mov rExpCut = 0x10009 // cutoff for exponent br.cond.sptk Common_Path } ;; LOCAL_LIBM_END(cotf) GLOBAL_IEEE754_ENTRY(tanf) { .mlx getf.exp rExp = f8 // ***** Get 2ˆ17 * s + E movl rSigRcpPiby2= 0xA2F9836E4E44152A // significand of 2/Pi } { .mlx addl rCoeffA = @ltoff(coeff_A), gp movl rScRshf = 0x47e8000000000000 // 1.5*2^(63+63+1) } ;; { .mfi alloc r32 = ar.pfs, 0, 4, 4, 0 fclass.m p9, p0 = f8, 0xc3 // Test for x=nan cmp.eq p10, p11 = r0, r0 // if p10=1 we compute tandf } { .mib ld8 rCoeffA = [rCoeffA] mov rExpCut = 0x10009 // cutoff for exponent nop.b 0 } ;; // Below is common path for both tandf and cotdf Common_Path: { .mfi setf.sig fScRcpPiby2 = rSigRcpPiby2 // 2^(63+1)*(2/Pi) fclass.m p8, p0 = f8, 0x23 // Test for x=inf mov rSignMask = 0x1ffff // mask for sign bit } { .mlx setf.d fScRshf = rScRshf // 1.5*2^(63+63+1) movl rRshf = 0x43e8000000000000 // 1.5 2^63 for right shift } ;; { .mfi and rSignMask = rSignMask, rExp // clear sign bit (p10) fclass.m.unc p7, p0 = f8, 0x07 // Test for x=0 (for tanf) mov rScFctrExp = 0xffff-64 // exp of scaling factor } { .mfb adds rCoeffB = coeff_B - coeff_A, rCoeffA (p9) fma.s.s0 f8 = f8, f1, f8 // Set qnan if x=nan (p9) br.ret.spnt b0 // Exit for x=nan } ;; { .mfi cmp.ge p6, p0 = rSignMask, rExpCut // p6 = (E => 0x10009) (p8) frcpa.s0 f8, p0 = f0, f0 // Set qnan indef if x=inf mov GR_Parameter_Tag = 227 // (cotf) } { .mbb ldfe fPiby2 = [rCoeffB], 16 (p8) br.ret.spnt b0 // Exit for x=inf (p6) br.cond.spnt Huge_Argument // Branch if |x|>=2^10 } ;; { .mfi nop.m 0 (p11) fclass.m.unc p6, p0 = f8, 0x07 // Test for x=0 (for cotf) nop.i 0 } { .mfb nop.m 0 fnorm.s0 fNormArg = f8 (p7) br.ret.spnt b0 // Exit for x=0 (for tanf) } ;; { .mmf ldfpd fA01, fA03 = [rCoeffA], 16 ldfpd fB01, fB03 = [rCoeffB], 16 fmerge.s f10 = f8, f8 // Save input for error call } ;; { .mmf setf.exp fScFctr = rScFctrExp // get as real setf.d fRshf = rRshf // get right shifter as real (p6) frcpa.s0 f8, p0 = f1, f8 // cotf(+-0) = +-Inf } ;; { .mmb ldfpd fA05, fA07 = [rCoeffA], 16 ldfpd fB05, fB07 = [rCoeffB], 16 (p6) br.cond.spnt __libm_error_region // call error support if cotf(+-0) } ;; { .mmi ldfpd fA09, fA11 = [rCoeffA], 16 ldfpd fB09, fB11 = [rCoeffB], 16 nop.i 0 } ;; { .mfi nop.m 0 fma.s1 fShiftedN = fNormArg,fScRcpPiby2,fScRshf // x*2^70*(2/Pi)+ScRshf nop.i 0 } ;; { .mfi nop.m 0 fms.s1 fN = fShiftedN, fScFctr, fRshf // N = Y*2^(-70) - Rshf nop.i 0 } ;; .pred.rel "mutex", p10, p11 { .mfi getf.sig rIntN = fShiftedN // get N as integer (p10) fnma.s1 fR = fN, fPiby2, fNormArg // R = x - (Pi/2)*N (tanf) nop.i 0 } { .mfi nop.m 0 (p11) fms.s1 fR = fN, fPiby2, fNormArg // R = (Pi/2)*N - x (cotf) nop.i 0 } ;; { .mmi ldfpd fA13, fA15 = [rCoeffA], 16 ldfpd fA17, fA19 = [rCoeffB], 16 nop.i 0 } ;; Return_From_Huges: { .mfi nop.m 0 fma.s1 fRp2 = fR, fR, f0 // R^2 (p11) add rIntN = 0x1, rIntN // N = N + 1 (cotf) } ;; { .mfi nop.m 0 frcpa.s1 fY0, p0 = f1, fR // Y0 ~ 1/R tbit.z p8, p9 = rIntN, 0 // p8=1 if N is even } ;; // Below are mixed polynomial calculations (mixed for even and odd N) { .mfi nop.m 0 (p9) fma.s1 fB03_01 = fRp2, fB03, fB01 // R^2*B3 + B1 nop.i 0 } { .mfi nop.m 0 fma.s1 fRp4 = fRp2, fRp2, f0 // R^4 nop.i 0 } ;; { .mfi nop.m 0 (p8) fma.s1 fA15_13 = fRp2, fA15, fA13 // R^2*A15 + A13 nop.i 0 } { .mfi nop.m 0 (p8) fma.s1 fA19_17 = fRp2, fA19, fA17 // R^2*A19 + A17 nop.i 0 } ;; { .mfi nop.m 0 (p8) fma.s1 fA07_05 = fRp2, fA07, fA05 // R^2*A7 + A5 nop.i 0 } { .mfi nop.m 0 (p8) fma.s1 fA11_09 = fRp2, fA11, fA09 // R^2*A11 + A9 nop.i 0 } ;; { .mfi nop.m 0 (p9) fma.s1 fB07_05 = fRp2, fB07, fB05 // R^2*B7 + B5 nop.i 0 } { .mfi nop.m 0 (p9) fma.s1 fB11_09 = fRp2, fB11, fB09 // R^2*B11 + B9 nop.i 0 } ;; { .mfi nop.m 0 (p9) fnma.s1 fD = fR, fY0, f1 // D = 1 - R*Y0 nop.i 0 } { .mfi nop.m 0 (p8) fma.s1 fA03_01 = fRp2, fA03, fA01 // R^2*A3 + A1 nop.i 0 } ;; { .mfi nop.m 0 fma.s1 fRp8 = fRp4, fRp4, f0 // R^8 nop.i 0 } { .mfi nop.m 0 fma.s1 fRp5 = fR, fRp4, f0 // R^5 nop.i 0 } ;; { .mfi nop.m 0 (p8) fma.s1 fA11_05 = fRp4, fA11_09, fA07_05 // R^4*(R^2*A11 + A9) + ... nop.i 0 } { .mfi nop.m 0 (p8) fma.s1 fA19_13 = fRp4, fA19_17, fA15_13 // R^4*(R^2*A19 + A17) + .. nop.i 0 } ;; { .mfi nop.m 0 (p9) fma.s1 fB11_05 = fRp4, fB11_09, fB07_05 // R^4*(R^2*B11 + B9) + ... nop.i 0 } { .mfi nop.m 0 (p9) fma.s1 fRbyB03_01 = fR, fB03_01, f0 // R*(R^2*B3 + B1) nop.i 0 } ;; { .mfi nop.m 0 (p9) fma.s1 fY1 = fY0, fD, fY0 // Y1 = Y0*D + Y0 nop.i 0 } { .mfi nop.m 0 (p9) fma.s1 fDp2 = fD, fD, f0 // D^2 nop.i 0 } ;; { .mfi nop.m 0 // R^8*(R^6*A19 + R^4*A17 + R^2*A15 + A13) + R^6*A11 + R^4*A9 + R^2*A7 + A5 (p8) fma.d.s1 fA19_05 = fRp8, fA19_13, fA11_05 nop.i 0 } { .mfi nop.m 0 (p8) fma.d.s1 fRbyA03_01 = fR, fA03_01, f0 // R*(R^2*A3 + A1) nop.i 0 } ;; { .mfi nop.m 0 (p9) fma.d.s1 fInvR = fY1, fDp2, fY1 // 1/R = Y1*D^2 + Y1 nop.i 0 } { .mfi nop.m 0 // R^5*(R^6*B11 + R^4*B9 + R^2*B7 + B5) + R^3*B3 + R*B1 (p9) fma.d.s1 fRbyB11_01 = fRp5, fB11_05, fRbyB03_01 nop.i 0 } ;; .pred.rel "mutex", p8, p9 { .mfi nop.m 0 // Result = R^5*(R^14*A19 + R^12*A17 + R^10*A15 + ...) + R^3*A3 + R*A1 (p8) fma.s.s0 f8 = fRp5, fA19_05, fRbyA03_01 nop.i 0 } { .mfb nop.m 0 // Result = -1/R + R^11*B11 + R^9*B9 + R^7*B7 + R^5*B5 + R^3*B3 + R*B1 (p9) fnma.s.s0 f8 = f1, fInvR, fRbyB11_01 br.ret.sptk b0 // exit for main path } ;; GLOBAL_IEEE754_END(tanf) LOCAL_LIBM_ENTRY(__libm_callout) Huge_Argument: .prologue { .mfi nop.m 0 fmerge.s f9 = f0,f0 .save ar.pfs,GR_SAVE_PFS mov GR_SAVE_PFS=ar.pfs } ;; { .mfi mov GR_SAVE_GP=gp nop.f 0 .save b0, GR_SAVE_B0 mov GR_SAVE_B0=b0 } .body { .mmb nop.m 999 nop.m 999 (p10) br.cond.sptk.many call_tanl ;; } // Here if we should call cotl (p10=0, p11=1) { .mmb nop.m 999 nop.m 999 br.call.sptk.many b0=__libm_cotl# ;; } { .mfi mov gp = GR_SAVE_GP fnorm.s.s0 f8 = f8 mov b0 = GR_SAVE_B0 } ;; { .mib nop.m 999 mov ar.pfs = GR_SAVE_PFS br.ret.sptk b0 ;; } // Here if we should call tanl (p10=1, p11=0) call_tanl: { .mmb nop.m 999 nop.m 999 br.call.sptk.many b0=__libm_tanl# ;; } { .mfi mov gp = GR_SAVE_GP fnorm.s.s0 f8 = f8 mov b0 = GR_SAVE_B0 } ;; { .mib nop.m 999 mov ar.pfs = GR_SAVE_PFS br.ret.sptk b0 ;; } LOCAL_LIBM_END(__libm_callout) .type __libm_tanl#,@function .global __libm_tanl# .type __libm_cotl#,@function .global __libm_cotl# LOCAL_LIBM_ENTRY(__libm_error_region) .prologue // (1) { .mfi add GR_Parameter_Y=-32,sp // Parameter 2 value nop.f 0 .save ar.pfs,GR_SAVE_PFS mov GR_SAVE_PFS=ar.pfs // Save ar.pfs } { .mfi .fframe 64 add sp=-64,sp // Create new stack nop.f 0 mov GR_SAVE_GP=gp // Save gp };; // (2) { .mmi stfs [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack add GR_Parameter_X = 16,sp // Parameter 1 address .save b0, GR_SAVE_B0 mov GR_SAVE_B0=b0 // Save b0 };; .body // (3) { .mib stfs [GR_Parameter_X] = f10 // STORE Parameter 1 on stack add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address nop.b 0 } { .mib stfs [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack add GR_Parameter_Y = -16,GR_Parameter_Y br.call.sptk b0=__libm_error_support# // Call error handling function };; { .mmi nop.m 0 nop.m 0 add GR_Parameter_RESULT = 48,sp };; // (4) { .mmi ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack .restore sp add sp = 64,sp // Restore stack pointer mov b0 = GR_SAVE_B0 // Restore return address };; { .mib mov gp = GR_SAVE_GP // Restore gp mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs br.ret.sptk b0 // Return };; LOCAL_LIBM_END(__libm_error_region) .type __libm_error_support#,@function .global __libm_error_support#