.file "nearbyintl.s" // Copyright (c) 2000 - 2003, Intel Corporation // All rights reserved. // // Contributed 2000 by the Intel Numerics Group, Intel Corporation // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm. // // History //============================================================== // 10/19/00 Created // 02/08/01 Corrected behavior for all rounding modes. // 05/20/02 Cleaned up namespace and sf0 syntax // 02/10/03 Reordered header: .section, .global, .proc, .align // 07/25/03 Improved performance //============================================================== // API //============================================================== // long double nearbyintl(long double x) //============================================================== // general input registers: // r14 - r21 rSignexp = r14 rExp = r15 rExpMask = r16 rBigexp = r17 rFpsr = r19 rRcs0 = r20 rRcs0Mask = r21 // floating-point registers: // f8 - f10 fXInt = f9 fNormX = f10 // predicate registers used: // p6 - p10 // Overview of operation //============================================================== // long double nearbyintl(long double x) // Return an integer value (represented as a long double) that is x // rounded to integer in current rounding mode // Inexact is not set, otherwise result identical with rint. //============================================================== // double_extended // if the exponent is > 1003e => 3F(true) = 63(decimal) // we have a significand of 64 bits 1.63-bits. // If we multiply by 2^63, we no longer have a fractional part // So input is an integer value already. // double // if the exponent is >= 10033 => 34(true) = 52(decimal) // 34 + 3ff = 433 // we have a significand of 53 bits 1.52-bits. (implicit 1) // If we multiply by 2^52, we no longer have a fractional part // So input is an integer value already. // single // if the exponent is > 10016 => 17(true) = 23(decimal) // we have a significand of 24 bits 1.23-bits. (implicit 1) // If we multiply by 2^23, we no longer have a fractional part // So input is an integer value already. .section .text GLOBAL_LIBM_ENTRY(__nearbyintl) { .mfi getf.exp rSignexp = f8 // Get signexp, recompute if unorm fclass.m p7,p0 = f8, 0x0b // Test x unorm addl rBigexp = 0x1003e, r0 // Set exponent at which is integer } { .mfi nop.m 0 fcvt.fx.s1 fXInt = f8 // Convert to int in significand mov rExpMask = 0x1FFFF // Form exponent mask } ;; { .mfi mov rFpsr = ar40 // Read fpsr -- check rc.s0 fclass.m p6,p0 = f8, 0x1e3 // Test x natval, nan, inf nop.i 0 } { .mfb nop.m 0 fnorm.s1 fNormX = f8 // Normalize input (p7) br.cond.spnt RINT_UNORM // Branch if x unorm } ;; RINT_COMMON: // Return here from RINT_UNORM { .mfb and rExp = rSignexp, rExpMask // Get biased exponent (p6) fma.s0 f8 = f8, f1, f0 // Result if x natval, nan, inf (p6) br.ret.spnt b0 // Exit if x natval, nan, inf } ;; { .mfi mov rRcs0Mask = 0x0c00 // Mask for rc.s0 fcvt.xf f8 = fXInt // Result assume |x| < 2^63 cmp.ge p7,p8 = rExp, rBigexp // Is |x| >= 2^63? } ;; // We must correct result if |x| >= 2^63 { .mfi nop.m 0 (p7) fma.s0 f8 = fNormX, f1, f0 // If |x| >= 2^63, result x nop.i 0 } ;; { .mfi nop.m 0 (p8) fmerge.s f8 = fNormX, f8 // Make sign nearbyintl(x)= sign x nop.i 0 } ;; { .mfi (p8) and rRcs0 = rFpsr, rRcs0Mask // Get rounding mode for sf0 nop.f 0 nop.i 0 } ;; // If |x| < 2^63 we must test for other rounding modes { .mbb (p8) cmp.ne.unc p10,p0 = rRcs0, r0 // Test for other rounding modes (p10) br.cond.spnt RINT_NOT_ROUND_NEAREST // Branch if not round nearest br.ret.sptk b0 // Exit main path if round nearest } ;; RINT_UNORM: // Here if x unorm { .mfb getf.exp rSignexp = fNormX // Get signexp, recompute if unorm fcmp.eq.s0 p7,p0 = f8, f0 // Dummy op to set denormal flag br.cond.sptk RINT_COMMON // Return to main path } ;; RINT_NOT_ROUND_NEAREST: // Here if not round to nearest, and |x| < 2^63 // Set rounding mode of s2 to that of s0, and repeat the conversion using s2 { .mfi nop.m 0 fsetc.s2 0x7f, 0x40 nop.i 0 } ;; { .mfi nop.m 0 fcvt.fx.s2 fXInt = fNormX // Convert to int in significand nop.i 0 } ;; { .mfi nop.m 0 fcvt.xf f8 = fXInt // Expected result nop.i 0 } ;; // Be sure sign of result = sign of input. Fixes cases where result is 0. { .mfb nop.m 0 fmerge.s f8 = fNormX, f8 br.ret.sptk b0 // Exit main path } ;; GLOBAL_LIBM_END(__nearbyintl) weak_alias (__nearbyintl, nearbyintl)