.file "nearbyintf.s" // Copyright (c) 2000 - 2003, Intel Corporation // All rights reserved. // // Contributed 2000 by the Intel Numerics Group, Intel Corporation // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm. // // History //============================================================== // 10/19/00 Created // 02/08/01 Corrected behavior for all rounding modes. // 05/20/02 Cleaned up namespace and sf0 syntax // 02/10/03 Reordered header: .section, .global, .proc, .align //============================================================== // // API //============================================================== // float nearbyintf(float x) // // general registers used: // nearbyint_GR_signexp = r14 nearbyint_GR_exponent = r15 nearbyint_GR_17ones = r16 nearbyint_GR_10033 = r17 nearbyint_GR_fpsr = r18 nearbyint_GR_rcs0 = r19 nearbyint_GR_rcs0_mask = r20 // predicate registers used: // p6-11 // floating-point registers used: NEARBYINT_NORM_f8 = f9 NEARBYINT_FLOAT_INT_f8 = f10 NEARBYINT_INT_f8 = f11 // Overview of operation //============================================================== // float nearbyintf(float x) // Return an integer value (represented as a float) that is x rounded to integer in current // rounding mode // ******************************************************************************* // Set denormal flag for denormal input and // and take denormal fault if necessary. // Is the input an integer value already? // double_extended // if the exponent is >= 1003e => 3F(true) = 63(decimal) // we have a significand of 64 bits 1.63-bits. // If we multiply by 2^63, we no longer have a fractional part // So input is an integer value already. // double // if the exponent is >= 10033 => 34(true) = 52(decimal) // 34 + 3ff = 433 // we have a significand of 53 bits 1.52-bits. (implicit 1) // If we multiply by 2^52, we no longer have a fractional part // So input is an integer value already. // single // if the exponent is >= 10016 => 17(true) = 23(decimal) // we have a significand of 53 bits 1.52-bits. (implicit 1) // If we multiply by 2^52, we no longer have a fractional part // So input is an integer value already. // If x is NAN, ZERO, or INFINITY, then return // qnan snan inf norm unorm 0 -+ // 1 1 1 0 0 1 11 0xe7 .section .text GLOBAL_LIBM_ENTRY(nearbyintf) { .mfi mov nearbyint_GR_fpsr = ar40 // Read the fpsr--need to check rc.s0 fcvt.fx.s1 NEARBYINT_INT_f8 = f8 addl nearbyint_GR_10033 = 0x10016, r0 } { .mfi nop.m 999 fnorm.s1 NEARBYINT_NORM_f8 = f8 mov nearbyint_GR_17ones = 0x1FFFF ;; } { .mfi nop.m 999 fclass.m.unc p6,p0 = f8, 0xe7 mov nearbyint_GR_rcs0_mask = 0x0c00 ;; } { .mfb nop.m 999 (p6) fnorm.s.s0 f8 = f8 (p6) br.ret.spnt b0 // Exit if x nan, inf, zero ;; } { .mfi nop.m 999 fcvt.xf NEARBYINT_FLOAT_INT_f8 = NEARBYINT_INT_f8 nop.i 999 ;; } { .mfi getf.exp nearbyint_GR_signexp = NEARBYINT_NORM_f8 fcmp.eq.s0 p8,p0 = f8,f0 // Dummy op to set denormal nop.i 999 ;; } { .mii nop.m 999 nop.i 999 and nearbyint_GR_exponent = nearbyint_GR_signexp, nearbyint_GR_17ones ;; } { .mmi cmp.ge.unc p7,p6 = nearbyint_GR_exponent, nearbyint_GR_10033 and nearbyint_GR_rcs0 = nearbyint_GR_rcs0_mask, nearbyint_GR_fpsr nop.i 999 ;; } // Check to see if s0 rounding mode is round to nearest. If not then set s2 // rounding mode to that of s0 and repeat conversions. NEARBYINT_COMMON: { .mfb cmp.ne p11,p0 = nearbyint_GR_rcs0, r0 (p6) fclass.m.unc p9,p10 = NEARBYINT_FLOAT_INT_f8, 0x07 // Test for result=0 (p11) br.cond.spnt NEARBYINT_NOT_ROUND_NEAREST // Branch if not round to nearest ;; } { .mfi nop.m 999 (p7) fnorm.s.s0 f8 = f8 nop.i 999 ;; } // If result is zero, merge sign of input { .mfi nop.m 999 (p9) fmerge.s f8 = f8, NEARBYINT_FLOAT_INT_f8 nop.i 999 } { .mfb nop.m 999 (p10) fnorm.s.s0 f8 = NEARBYINT_FLOAT_INT_f8 br.ret.sptk b0 ;; } NEARBYINT_NOT_ROUND_NEAREST: // Set rounding mode of s2 to that of s0 { .mfi mov nearbyint_GR_rcs0 = r0 // Clear so we don't come back here fsetc.s2 0x7f, 0x40 nop.i 999 ;; } { .mfi nop.m 999 fcvt.fx.s2 NEARBYINT_INT_f8 = f8 nop.i 999 ;; } { .mfb nop.m 999 fcvt.xf NEARBYINT_FLOAT_INT_f8 = NEARBYINT_INT_f8 br.cond.sptk NEARBYINT_COMMON ;; } GLOBAL_LIBM_END(nearbyintf)