.file "libm_scalbnl.s" // Copyright (c) 2000 - 2003, Intel Corporation // All rights reserved. // // Contributed 2000 by the Intel Numerics Group, Intel Corporation // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm. // // History //============================================================== // 02/02/00 Initial version // 01/26/01 scalbnl completely reworked and now standalone version // 01/04/02 Added handling for int 32 or 64 bits // 05/20/02 Cleaned up namespace and sf0 syntax // 02/10/03 Reordered header: .section, .global, .proc, .align // // API //============================================================== // long double __libm_scalbnl (long double x, int n, int int_type) // input floating point f8 and int n (r34), int int_type (r35) // output floating point f8 // // int_type = 0 if int is 32 bits // int_type = 1 if int is 64 bits // // Returns x* 2**n using an fma and detects overflow // and underflow. // // FR_Big = f6 FR_NBig = f7 FR_Floating_X = f8 FR_Result = f8 FR_Result2 = f9 FR_Result3 = f11 FR_Norm_X = f12 FR_Two_N = f14 FR_Two_to_Big = f15 GR_N_Biased = r15 GR_Big = r16 GR_NBig = r17 GR_Scratch = r18 GR_Scratch1 = r19 GR_Bias = r20 GR_N_as_int = r21 GR_SAVE_B0 = r32 GR_SAVE_GP = r33 GR_SAVE_PFS = r34 GR_Parameter_X = r35 GR_Parameter_Y = r36 GR_Parameter_RESULT = r37 GR_Tag = r38 .section .text GLOBAL_LIBM_ENTRY(__libm_scalbnl) // // Is x NAN, INF, ZERO, +-? // Build the exponent Bias // { .mfi alloc r32=ar.pfs,3,0,4,0 fclass.m p7,p0 = FR_Floating_X, 0xe7 //@snan | @qnan | @inf | @zero addl GR_Bias = 0x0FFFF,r0 } // // Is N zero? // Normalize x // Is integer type 32 bits? // { .mfi cmp.eq p6,p0 = r34,r0 fnorm.s1 FR_Norm_X = FR_Floating_X cmp.eq p8,p9 = r35,r0 } ;; // Sign extend N if int is 32 bits { .mfi (p9) mov GR_N_as_int = r34 // Copy N if int is 64 bits nop.f 0 (p8) sxt4 GR_N_as_int = r34 // Sign extend N if int is 32 bits } ;; // // Branch and return special values. // Create -35000 // Create 35000 // { .mfi addl GR_Big = 35000,r0 nop.f 0 add GR_N_Biased = GR_Bias,GR_N_as_int } { .mfb addl GR_NBig = -35000,r0 (p7) fma.s0 FR_Result = FR_Floating_X,f1, f0 (p7) br.ret.spnt b0 };; // // Build the exponent Bias // Return x when N = 0 // { .mfi setf.exp FR_Two_N = GR_N_Biased nop.f 0 addl GR_Scratch1 = 0x063BF,r0 } { .mfb addl GR_Scratch = 0x019C3F,r0 (p6) fma.s0 FR_Result = FR_Floating_X,f1, f0 (p6) br.ret.spnt b0 };; // // Create 2*big // Create 2**-big // Is N > 35000 // Is N < -35000 // Raise Denormal operand flag with compare // Main path, create 2**N // { .mfi setf.exp FR_NBig = GR_Scratch1 nop.f 0 cmp.ge p6, p0 = GR_N_as_int, GR_Big } { .mfi setf.exp FR_Big = GR_Scratch fcmp.ge.s0 p0,p11 = FR_Floating_X,f0 cmp.le p8, p0 = GR_N_as_int, GR_NBig };; // // Adjust 2**N if N was very small or very large // { .mfi nop.m 0 (p6) fma.s1 FR_Two_N = FR_Big,f1,f0 nop.i 0 } { .mlx nop.m 999 movl GR_Scratch = 0x0000000000033FFF };; { .mfi nop.m 0 (p8) fma.s1 FR_Two_N = FR_NBig,f1,f0 nop.i 0 } { .mlx nop.m 999 movl GR_Scratch1= 0x0000000000013FFF };; // Set up necessary status fields // // S0 user supplied status // S2 user supplied status + WRE + TD (Overflows) // S3 user supplied status + FZ + TD (Underflows) // { .mfi nop.m 999 fsetc.s3 0x7F,0x41 nop.i 999 } { .mfi nop.m 999 fsetc.s2 0x7F,0x42 nop.i 999 };; // // Do final operation // { .mfi setf.exp FR_NBig = GR_Scratch fma.s0 FR_Result = FR_Two_N,FR_Norm_X,f0 nop.i 999 } { .mfi nop.m 999 fma.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0 nop.i 999 };; { .mfi setf.exp FR_Big = GR_Scratch1 fma.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0 nop.i 999 };; // Check for overflow or underflow. // Restore s3 // Restore s2 // { .mfi nop.m 0 fsetc.s3 0x7F,0x40 nop.i 999 } { .mfi nop.m 0 fsetc.s2 0x7F,0x40 nop.i 999 };; // // Is the result zero? // { .mfi nop.m 999 fclass.m p6, p0 = FR_Result3, 0x007 nop.i 999 } { .mfi addl GR_Tag = 174, r0 fcmp.ge.s1 p7, p8 = FR_Result2 , FR_Big nop.i 0 };; // // Detect masked underflow - Tiny + Inexact Only // { .mfi nop.m 999 (p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2 nop.i 999 };; // // Is result bigger the allowed range? // Branch out for underflow // { .mfb (p6) addl GR_Tag = 175, r0 (p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig (p6) br.cond.spnt SCALBNL_UNDERFLOW };; // // Branch out for overflow // { .mbb nop.m 0 (p7) br.cond.spnt SCALBNL_OVERFLOW (p9) br.cond.spnt SCALBNL_OVERFLOW };; // // Return from main path. // { .mfb nop.m 999 nop.f 0 br.ret.sptk b0;; } GLOBAL_LIBM_END(__libm_scalbnl) __libm_error_region: SCALBNL_OVERFLOW: SCALBNL_UNDERFLOW: // // Get stack address of N // .prologue { .mfi add GR_Parameter_Y=-32,sp nop.f 0 .save ar.pfs,GR_SAVE_PFS mov GR_SAVE_PFS=ar.pfs } // // Adjust sp // { .mfi .fframe 64 add sp=-64,sp nop.f 0 mov GR_SAVE_GP=gp };; // // Store N on stack in correct position // Locate the address of x on stack // { .mmi st8 [GR_Parameter_Y] = GR_N_as_int,16 add GR_Parameter_X = 16,sp .save b0, GR_SAVE_B0 mov GR_SAVE_B0=b0 };; // // Store x on the stack. // Get address for result on stack. // .body { .mib stfe [GR_Parameter_X] = FR_Norm_X add GR_Parameter_RESULT = 0,GR_Parameter_Y nop.b 0 } { .mib stfe [GR_Parameter_Y] = FR_Result add GR_Parameter_Y = -16,GR_Parameter_Y br.call.sptk b0=__libm_error_support# };; // // Get location of result on stack // { .mmi nop.m 0 nop.m 0 add GR_Parameter_RESULT = 48,sp };; // // Get the new result // { .mmi ldfe FR_Result = [GR_Parameter_RESULT] .restore sp add sp = 64,sp mov b0 = GR_SAVE_B0 };; // // Restore gp, ar.pfs and return // { .mib mov gp = GR_SAVE_GP mov ar.pfs = GR_SAVE_PFS br.ret.sptk b0 };; LOCAL_LIBM_END(__libm_error_region) .type __libm_error_support#,@function .global __libm_error_support#