.file "expf_m1.s" // Copyright (c) 2000 - 2005, Intel Corporation // All rights reserved. // // Contributed 2000 by the Intel Numerics Group, Intel Corporation // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm. // History //********************************************************************* // 02/02/00 Initial Version // 04/04/00 Unwind support added // 08/15/00 Bundle added after call to __libm_error_support to properly // set [the previously overwritten] GR_Parameter_RESULT. // 07/07/01 Improved speed of all paths // 05/20/02 Cleaned up namespace and sf0 syntax // 11/20/02 Improved speed, algorithm based on expf // 03/31/05 Reformatted delimiters between data tables // // // API //********************************************************************* // float expm1f(float) // // Overview of operation //********************************************************************* // 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths // // 2. |x| < 2^-40 // Result = x, computed by x + x*x to handle appropriate flags and rounding // // 3. 2^-40 <= |x| < 2^-2 // Result determined by 8th order Taylor series polynomial // expm1f(x) = x + A2*x^2 + ... + A8*x^8 // // 4. x < -24.0 // Here we know result is essentially -1 + eps, where eps only affects // rounded result. Set I. // // 5. x >= 88.7228 // Result overflows. Set I, O, and call error support // // 6. 2^-2 <= x < 88.7228 or -24.0 <= x < -2^-2 // This is the main path. The algorithm is described below: // Take the input x. w is "how many log2/128 in x?" // w = x * 64/log2 // NJ = int(w) // x = NJ*log2/64 + R // NJ = 64*n + j // x = n*log2 + (log2/64)*j + R // // So, exp(x) = 2^n * 2^(j/64)* exp(R) // // T = 2^n * 2^(j/64) // Construct 2^n // Get 2^(j/64) table // actually all the entries of 2^(j/64) table are stored in DP and // with exponent bits set to 0 -> multiplication on 2^n can be // performed by doing logical "or" operation with bits presenting 2^n // exp(R) = 1 + (exp(R) - 1) // P = exp(R) - 1 approximated by Taylor series of 3rd degree // P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2 // // The final result is reconstructed as follows // expm1f(x) = T*P + (T - 1.0) // Special values //********************************************************************* // expm1f(+0) = +0.0 // expm1f(-0) = -0.0 // expm1f(+qnan) = +qnan // expm1f(-qnan) = -qnan // expm1f(+snan) = +qnan // expm1f(-snan) = -qnan // expm1f(-inf) = -1.0 // expm1f(+inf) = +inf // Overflow and Underflow //********************************************************************* // expm1f(x) = largest single normal when // x = 88.7228 = 0x42b17217 // // Underflow is handled as described in case 2 above. // Registers used //********************************************************************* // Floating Point registers used: // f8, input // f6,f7, f9 -> f15, f32 -> f45 // General registers used: // r3, r20 -> r38 // Predicate registers used: // p9 -> p15 // Assembly macros //********************************************************************* // integer registers used // scratch rNJ = r3 rExp_half = r20 rSignexp_x = r21 rExp_x = r22 rExp_mask = r23 rExp_bias = r24 rTmp = r25 rM1_lim = r25 rGt_ln = r25 rJ = r26 rN = r27 rTblAddr = r28 rLn2Div64 = r29 rRightShifter = r30 r64DivLn2 = r31 // stacked GR_SAVE_PFS = r32 GR_SAVE_B0 = r33 GR_SAVE_GP = r34 GR_Parameter_X = r35 GR_Parameter_Y = r36 GR_Parameter_RESULT = r37 GR_Parameter_TAG = r38 // floating point registers used FR_X = f10 FR_Y = f1 FR_RESULT = f8 // scratch fRightShifter = f6 f64DivLn2 = f7 fNormX = f9 fNint = f10 fN = f11 fR = f12 fLn2Div64 = f13 fA2 = f14 fA3 = f15 // stacked fP = f32 fX3 = f33 fT = f34 fMIN_SGL_OFLOW_ARG = f35 fMAX_SGL_NORM_ARG = f36 fMAX_SGL_MINUS_1_ARG = f37 fA4 = f38 fA43 = f38 fA432 = f38 fRSqr = f39 fA5 = f40 fTmp = f41 fGt_pln = f41 fXsq = f41 fA7 = f42 fA6 = f43 fA65 = f43 fTm1 = f44 fA8 = f45 fA87 = f45 fA8765 = f45 fA8765432 = f45 fWre_urm_f8 = f45 RODATA .align 16 LOCAL_OBJECT_START(_expf_table) data8 0x3efa01a01a01a01a // A8 = 1/8! data8 0x3f2a01a01a01a01a // A7 = 1/7! data8 0x3f56c16c16c16c17 // A6 = 1/6! data8 0x3f81111111111111 // A5 = 1/5! data8 0x3fa5555555555555 // A4 = 1/4! data8 0x3fc5555555555555 // A3 = 1/3! // data4 0x42b17218 // Smallest sgl arg to overflow sgl result data4 0x42b17217 // Largest sgl arg to give sgl result // // 2^(j/64) table, j goes from 0 to 63 data8 0x0000000000000000 // 2^(0/64) data8 0x00002C9A3E778061 // 2^(1/64) data8 0x000059B0D3158574 // 2^(2/64) data8 0x0000874518759BC8 // 2^(3/64) data8 0x0000B5586CF9890F // 2^(4/64) data8 0x0000E3EC32D3D1A2 // 2^(5/64) data8 0x00011301D0125B51 // 2^(6/64) data8 0x0001429AAEA92DE0 // 2^(7/64) data8 0x000172B83C7D517B // 2^(8/64) data8 0x0001A35BEB6FCB75 // 2^(9/64) data8 0x0001D4873168B9AA // 2^(10/64) data8 0x0002063B88628CD6 // 2^(11/64) data8 0x0002387A6E756238 // 2^(12/64) data8 0x00026B4565E27CDD // 2^(13/64) data8 0x00029E9DF51FDEE1 // 2^(14/64) data8 0x0002D285A6E4030B // 2^(15/64) data8 0x000306FE0A31B715 // 2^(16/64) data8 0x00033C08B26416FF // 2^(17/64) data8 0x000371A7373AA9CB // 2^(18/64) data8 0x0003A7DB34E59FF7 // 2^(19/64) data8 0x0003DEA64C123422 // 2^(20/64) data8 0x0004160A21F72E2A // 2^(21/64) data8 0x00044E086061892D // 2^(22/64) data8 0x000486A2B5C13CD0 // 2^(23/64) data8 0x0004BFDAD5362A27 // 2^(24/64) data8 0x0004F9B2769D2CA7 // 2^(25/64) data8 0x0005342B569D4F82 // 2^(26/64) data8 0x00056F4736B527DA // 2^(27/64) data8 0x0005AB07DD485429 // 2^(28/64) data8 0x0005E76F15AD2148 // 2^(29/64) data8 0x0006247EB03A5585 // 2^(30/64) data8 0x0006623882552225 // 2^(31/64) data8 0x0006A09E667F3BCD // 2^(32/64) data8 0x0006DFB23C651A2F // 2^(33/64) data8 0x00071F75E8EC5F74 // 2^(34/64) data8 0x00075FEB564267C9 // 2^(35/64) data8 0x0007A11473EB0187 // 2^(36/64) data8 0x0007E2F336CF4E62 // 2^(37/64) data8 0x00082589994CCE13 // 2^(38/64) data8 0x000868D99B4492ED // 2^(39/64) data8 0x0008ACE5422AA0DB // 2^(40/64) data8 0x0008F1AE99157736 // 2^(41/64) data8 0x00093737B0CDC5E5 // 2^(42/64) data8 0x00097D829FDE4E50 // 2^(43/64) data8 0x0009C49182A3F090 // 2^(44/64) data8 0x000A0C667B5DE565 // 2^(45/64) data8 0x000A5503B23E255D // 2^(46/64) data8 0x000A9E6B5579FDBF // 2^(47/64) data8 0x000AE89F995AD3AD // 2^(48/64) data8 0x000B33A2B84F15FB // 2^(49/64) data8 0x000B7F76F2FB5E47 // 2^(50/64) data8 0x000BCC1E904BC1D2 // 2^(51/64) data8 0x000C199BDD85529C // 2^(52/64) data8 0x000C67F12E57D14B // 2^(53/64) data8 0x000CB720DCEF9069 // 2^(54/64) data8 0x000D072D4A07897C // 2^(55/64) data8 0x000D5818DCFBA487 // 2^(56/64) data8 0x000DA9E603DB3285 // 2^(57/64) data8 0x000DFC97337B9B5F // 2^(58/64) data8 0x000E502EE78B3FF6 // 2^(59/64) data8 0x000EA4AFA2A490DA // 2^(60/64) data8 0x000EFA1BEE615A27 // 2^(61/64) data8 0x000F50765B6E4540 // 2^(62/64) data8 0x000FA7C1819E90D8 // 2^(63/64) LOCAL_OBJECT_END(_expf_table) .section .text GLOBAL_IEEE754_ENTRY(expm1f) { .mlx getf.exp rSignexp_x = f8 // Must recompute if x unorm movl r64DivLn2 = 0x40571547652B82FE // 64/ln(2) } { .mlx addl rTblAddr = @ltoff(_expf_table),gp movl rRightShifter = 0x43E8000000000000 // DP Right Shifter } ;; { .mfi // point to the beginning of the table ld8 rTblAddr = [rTblAddr] fclass.m p14, p0 = f8 , 0x22 // test for -INF mov rExp_mask = 0x1ffff // Exponent mask } { .mfi nop.m 0 fnorm.s1 fNormX = f8 // normalized x nop.i 0 } ;; { .mfi setf.d f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg fclass.m p9, p0 = f8 , 0x0b // test for x unorm mov rExp_bias = 0xffff // Exponent bias } { .mlx // load Right Shifter to FP reg setf.d fRightShifter = rRightShifter movl rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR } ;; { .mfi ldfpd fA8, fA7 = [rTblAddr], 16 fcmp.eq.s1 p13, p0 = f0, f8 // test for x = 0.0 mov rExp_half = 0xfffe } { .mfb setf.d fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg nop.f 0 (p9) br.cond.spnt EXPM1_UNORM // Branch if x unorm } ;; EXPM1_COMMON: { .mfb ldfpd fA6, fA5 = [rTblAddr], 16 (p14) fms.s.s0 f8 = f0, f0, f1 // result if x = -inf (p14) br.ret.spnt b0 // exit here if x = -inf } ;; { .mfb ldfpd fA4, fA3 = [rTblAddr], 16 fclass.m p15, p0 = f8 , 0x1e1 // test for NaT,NaN,+Inf (p13) br.ret.spnt b0 // exit here if x =0.0, result is x } ;; { .mfi // overflow thresholds ldfps fMIN_SGL_OFLOW_ARG, fMAX_SGL_NORM_ARG = [rTblAddr], 8 fma.s1 fXsq = fNormX, fNormX, f0 // x^2 for small path and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x } { .mlx nop.m 0 movl rM1_lim = 0xc1c00000 // Minus -1 limit (-24.0), SP } ;; { .mfi setf.exp fA2 = rExp_half // x*(64/ln(2)) + Right Shifter fma.s1 fNint = fNormX, f64DivLn2, fRightShifter sub rExp_x = rExp_x, rExp_bias // True exponent of x } { .mfb nop.m 0 (p15) fma.s.s0 f8 = f8, f1, f0 // result if x = NaT,NaN,+Inf (p15) br.ret.spnt b0 // exit here if x = NaT,NaN,+Inf } ;; { .mfi setf.s fMAX_SGL_MINUS_1_ARG = rM1_lim // -1 threshold, -24.0 nop.f 0 cmp.gt p7, p8 = -2, rExp_x // Test |x| < 2^(-2) } ;; { .mfi (p7) cmp.gt.unc p6, p7 = -40, rExp_x // Test |x| < 2^(-40) fma.s1 fA87 = fA8, fNormX, fA7 // Small path, A8*x+A7 nop.i 0 } { .mfi nop.m 0 fma.s1 fA65 = fA6, fNormX, fA5 // Small path, A6*x+A5 nop.i 0 } ;; { .mfb nop.m 0 (p6) fma.s.s0 f8 = f8, f8, f8 // If x < 2^-40, result=x+x*x (p6) br.ret.spnt b0 // Exit if x < 2^-40 } ;; { .mfi nop.m 0 // check for overflow fcmp.gt.s1 p15, p14 = fNormX, fMIN_SGL_OFLOW_ARG nop.i 0 } { .mfi nop.m 0 fms.s1 fN = fNint, f1, fRightShifter // n in FP register nop.i 0 } ;; { .mfi nop.m 0 (p7) fma.s1 fA43 = fA4, fNormX, fA3 // Small path, A4*x+A3 nop.i 0 } ;; { .mfi getf.sig rNJ = fNint // bits of n, j (p7) fma.s1 fA8765 = fA87, fXsq, fA65 // Small path, A87*xsq+A65 nop.i 0 } { .mfb nop.m 0 (p7) fma.s1 fX3 = fXsq, fNormX, f0 // Small path, x^3 // branch out if overflow (p15) br.cond.spnt EXPM1_CERTAIN_OVERFLOW } ;; { .mfi addl rN = 0xffff-63, rNJ // biased and shifted n fnma.s1 fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64 extr.u rJ = rNJ , 0 , 6 // bits of j } ;; { .mfi shladd rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table // check for certain -1 fcmp.le.s1 p13, p0 = fNormX, fMAX_SGL_MINUS_1_ARG shr rN = rN, 6 // biased n } { .mfi nop.m 0 (p7) fma.s1 fA432 = fA43, fNormX, fA2 // Small path, A43*x+A2 nop.i 0 } ;; { .mfi ld8 rJ = [rJ] nop.f 0 shl rN = rN , 52 // 2^n bits in DP format } ;; { .mmi or rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format (p13) mov rTmp = 1 // Make small value for -1 path nop.i 0 } ;; { .mfi setf.d fT = rN // 2^n // check for possible overflow (only happens if input higher precision) (p14) fcmp.gt.s1 p14, p0 = fNormX, fMAX_SGL_NORM_ARG nop.i 0 } { .mfi nop.m 0 (p7) fma.s1 fA8765432 = fA8765, fX3, fA432 // A8765*x^3+A432 nop.i 0 } ;; { .mfi (p13) setf.exp fTmp = rTmp // Make small value for -1 path fma.s1 fP = fA3, fR, fA2 // A3*R + A2 nop.i 0 } { .mfb nop.m 0 fma.s1 fRSqr = fR, fR, f0 // R^2 (p13) br.cond.spnt EXPM1_CERTAIN_MINUS_ONE // Branch if x < -24.0 } ;; { .mfb nop.m 0 (p7) fma.s.s0 f8 = fA8765432, fXsq, fNormX // Small path, // result=xsq*A8765432+x (p7) br.ret.spnt b0 // Exit if 2^-40 <= |x| < 2^-2 } ;; { .mfi nop.m 0 fma.s1 fP = fP, fRSqr, fR // P = (A3*R + A2)*Rsqr + R nop.i 0 } ;; { .mfb nop.m 0 fms.s1 fTm1 = fT, f1, f1 // T - 1.0 (p14) br.cond.spnt EXPM1_POSSIBLE_OVERFLOW } ;; { .mfb nop.m 0 fma.s.s0 f8 = fP, fT, fTm1 br.ret.sptk b0 // Result for main path // minus_one_limit < x < -2^-2 // and +2^-2 <= x < overflow_limit } ;; // Here if x unorm EXPM1_UNORM: { .mfb getf.exp rSignexp_x = fNormX // Must recompute if x unorm fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag br.cond.sptk EXPM1_COMMON } ;; // here if result will be -1 and inexact, x <= -24.0 EXPM1_CERTAIN_MINUS_ONE: { .mfb nop.m 0 fms.s.s0 f8 = fTmp, fTmp, f1 // Result -1, and Inexact set br.ret.sptk b0 } ;; EXPM1_POSSIBLE_OVERFLOW: // Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG // This cannot happen if input is a single, only if input higher precision. // Overflow is a possibility, not a certainty. // Recompute result using status field 2 with user's rounding mode, // and wre set. If result is larger than largest single, then we have // overflow { .mfi mov rGt_ln = 0x1007f // Exponent for largest sgl + 1 ulp fsetc.s2 0x7F,0x42 // Get user's round mode, set wre nop.i 0 } ;; { .mfi setf.exp fGt_pln = rGt_ln // Create largest single + 1 ulp fma.s.s2 fWre_urm_f8 = fP, fT, fTm1 // Result with wre set nop.i 0 } ;; { .mfi nop.m 0 fsetc.s2 0x7F,0x40 // Turn off wre in sf2 nop.i 0 } ;; { .mfi nop.m 0 fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow nop.i 0 } ;; { .mfb nop.m 0 nop.f 0 (p6) br.cond.spnt EXPM1_CERTAIN_OVERFLOW // Branch if overflow } ;; { .mfb nop.m 0 fma.s.s0 f8 = fP, fT, fTm1 br.ret.sptk b0 // Exit if really no overflow } ;; // here if overflow EXPM1_CERTAIN_OVERFLOW: { .mmi addl rTmp = 0x1FFFE, r0;; setf.exp fTmp = rTmp nop.i 999 } ;; { .mfi alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers fmerge.s FR_X = fNormX,fNormX nop.i 0 } { .mfb mov GR_Parameter_TAG = 43 fma.s.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result br.cond.sptk __libm_error_region } ;; GLOBAL_IEEE754_END(expm1f) LOCAL_LIBM_ENTRY(__libm_error_region) .prologue { .mfi add GR_Parameter_Y=-32,sp // Parameter 2 value nop.f 999 .save ar.pfs,GR_SAVE_PFS mov GR_SAVE_PFS=ar.pfs // Save ar.pfs } { .mfi .fframe 64 add sp=-64,sp // Create new stack nop.f 0 mov GR_SAVE_GP=gp // Save gp };; { .mmi stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack add GR_Parameter_X = 16,sp // Parameter 1 address .save b0, GR_SAVE_B0 mov GR_SAVE_B0=b0 // Save b0 };; .body { .mfi stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack nop.f 0 add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address } { .mib stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack add GR_Parameter_Y = -16,GR_Parameter_Y br.call.sptk b0=__libm_error_support# // Call error handling function };; { .mmi add GR_Parameter_RESULT = 48,sp nop.m 0 nop.i 0 };; { .mmi ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack .restore sp add sp = 64,sp // Restore stack pointer mov b0 = GR_SAVE_B0 // Restore return address };; { .mib mov gp = GR_SAVE_GP // Restore gp mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs br.ret.sptk b0 // Return };; LOCAL_LIBM_END(__libm_error_region) .type __libm_error_support#,@function .global __libm_error_support#