.file "ceil.s" // Copyright (C) 2000, 2001, Intel Corporation // All rights reserved. // // Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story, // and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://developer.intel.com/opensource. // #include "libm_support.h" .align 32 .global ceil# .section .text .proc ceil# .align 32 // History //============================================================== // 2/02/00: Initial version // 6/13/00: Improved speed // 6/27/00: Eliminated incorrect invalid flag setting // API //============================================================== // double ceil(double x) // general input registers: ceil_GR_FFFF = r14 ceil_GR_signexp = r15 ceil_GR_exponent = r16 ceil_GR_expmask = r17 ceil_GR_bigexp = r18 // predicate registers used: // p6 ==> Input is NaN, infinity, zero // p7 ==> Input is denormal // p8 ==> Input is <0 // p9 ==> Input is >=0 // p10 ==> Input is already an integer (bigger than largest integer) // p11 ==> Input is not a large integer // p12 ==> Input is a smaller integer // p13 ==> Input is not an even integer, so inexact must be set // p14 ==> Input is between -1 and 0, so result will be -0 and inexact // floating-point registers used: CEIL_SIGNED_ZERO = f7 CEIL_NORM_f8 = f9 CEIL_FFFF = f10 CEIL_INEXACT = f11 CEIL_FLOAT_INT_f8 = f12 CEIL_INT_f8 = f13 CEIL_adj = f14 CEIL_MINUS_ONE = f15 // Overview of operation //============================================================== // double ceil(double x) // Return an integer value (represented as a double) that is the smallest // value not less than x // This is x rounded toward +infinity to an integral value. // Inexact is set if x != ceil(x) // ************************************************************************** // Set denormal flag for denormal input and // and take denormal fault if necessary. // Is the input an integer value already? // double_extended // if the exponent is > 1003e => 3F(true) = 63(decimal) // we have a significand of 64 bits 1.63-bits. // If we multiply by 2^63, we no longer have a fractional part // So input is an integer value already. // double // if the exponent is >= 10033 => 34(true) = 52(decimal) // 34 + 3ff = 433 // we have a significand of 53 bits 1.52-bits. (implicit 1) // If we multiply by 2^52, we no longer have a fractional part // So input is an integer value already. // single // if the exponent is > 10016 => 17(true) = 23(decimal) // we have a significand of 24 bits 1.23-bits. (implicit 1) // If we multiply by 2^23, we no longer have a fractional part // So input is an integer value already. // If x is NAN, ZERO, or INFINITY, then return // qnan snan inf norm unorm 0 -+ // 1 1 1 0 0 1 11 0xe7 ceil: { .mfi getf.exp ceil_GR_signexp = f8 fcvt.fx.trunc.s1 CEIL_INT_f8 = f8 addl ceil_GR_bigexp = 0x10033, r0 } { .mfi addl ceil_GR_FFFF = -1,r0 fcmp.lt.s1 p8,p9 = f8,f0 mov ceil_GR_expmask = 0x1FFFF ;; } // p7 ==> denorm { .mfi setf.sig CEIL_FFFF = ceil_GR_FFFF fclass.m p7,p0 = f8, 0x0b nop.i 999 } { .mfi nop.m 999 fnorm CEIL_NORM_f8 = f8 nop.i 999 ;; } // Form 0 with sign of input in case negative zero is needed { .mfi nop.m 999 fmerge.s CEIL_SIGNED_ZERO = f8, f0 nop.i 999 } { .mfi nop.m 999 fsub.s1 CEIL_MINUS_ONE = f0, f1 nop.i 999 ;; } // p6 ==> NAN, INF, ZERO { .mfb nop.m 999 fclass.m p6,p10 = f8, 0xe7 (p7) br.cond.spnt L(CEIL_DENORM) ;; } L(CEIL_COMMON): .pred.rel "mutex",p8,p9 // Set adjustment to add to trunc(x) for result // If x>0, adjustment is 1.0 // If x<=0, adjustment is 0.0 { .mfi and ceil_GR_exponent = ceil_GR_signexp, ceil_GR_expmask (p9) fadd.s1 CEIL_adj = f1,f0 nop.i 999 } { .mfi nop.m 999 (p8) fadd.s1 CEIL_adj = f0,f0 nop.i 999 ;; } { .mfi (p10) cmp.ge.unc p10,p11 = ceil_GR_exponent, ceil_GR_bigexp (p6) fnorm.d f8 = f8 nop.i 999 ;; } { .mfi nop.m 999 (p11) fcvt.xf CEIL_FLOAT_INT_f8 = CEIL_INT_f8 nop.i 999 ;; } { .mfi nop.m 999 (p10) fnorm.d f8 = CEIL_NORM_f8 nop.i 999 ;; } // Is -1 < x < 0? If so, result will be -0. Special case it with p14 set. { .mfi nop.m 999 (p8) fcmp.gt.unc.s1 p14,p0 = CEIL_NORM_f8, CEIL_MINUS_ONE nop.i 999 ;; } { .mfi (p14) cmp.ne p11,p0 = r0,r0 (p14) fnorm.d f8 = CEIL_SIGNED_ZERO nop.i 999 } { .mfi nop.m 999 (p14) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF nop.i 999 ;; } { .mfi nop.m 999 (p11) fadd.d f8 = CEIL_FLOAT_INT_f8,CEIL_adj nop.i 999 ;; } { .mfi nop.m 999 (p11) fcmp.eq.unc.s1 p12,p13 = CEIL_FLOAT_INT_f8, CEIL_NORM_f8 nop.i 999 ;; } // Set inexact if result not equal to input { .mfi nop.m 999 (p13) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF nop.i 999 } // Set result to input if integer { .mfb nop.m 999 (p12) fnorm.d f8 = CEIL_NORM_f8 br.ret.sptk b0 ;; } // Here if input denorm L(CEIL_DENORM): { .mfb getf.exp ceil_GR_signexp = CEIL_NORM_f8 fcvt.fx.trunc.s1 CEIL_INT_f8 = CEIL_NORM_f8 br.cond.sptk L(CEIL_COMMON) ;; } .endp ceil ASM_SIZE_DIRECTIVE(ceil)