.file "libm_sincosf.s" // Copyright (c) 2002 - 2005, Intel Corporation // All rights reserved. // // Contributed 2002 by the Intel Numerics Group, Intel Corporation // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm. // // History //============================================================== // 02/01/02 Initial version // 02/18/02 Large arguments processing routine is excluded. // External interface entry points are added // 02/26/02 Added temporary return of results in r8, r9 // 03/13/02 Corrected restore of predicate registers // 03/19/02 Added stack unwind around call to __libm_cisf_large // 09/05/02 Work range is widened by reduction strengthen (2 parts of Pi/16) // 02/10/03 Reordered header: .section, .global, .proc, .align // 02/11/04 cisf is moved to the separate file. // 03/31/05 Reformatted delimiters between data tables // API //============================================================== // 1) void sincosf(float, float*s, float*c) // 2) __libm_sincosf - internal LIBM function, that accepts // argument in f8 and returns cosine through f8, sine through f9 // // Overview of operation //============================================================== // // Step 1 // ====== // Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4 // divide x by pi/2^k. // Multiply by 2^k/pi. // nfloat = Round result to integer (round-to-nearest) // // r = x - nfloat * pi/2^k // Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy. // pi/2^k is stored as two numbers that when added make pi/2^k. // pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k) // HIGH part is rounded to zero, LOW - to nearest // // x = (nfloat * pi/2^k) + r // r is small enough that we can use a polynomial approximation // and is referred to as the reduced argument. // // Step 3 // ====== // Take the unreduced part and remove the multiples of 2pi. // So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits // // nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1) // N * 2^(k+1) // nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k // nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k // nfloat * pi/2^k = N2pi + M * pi/2^k // // // Sin(x) = Sin((nfloat * pi/2^k) + r) // = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r) // // Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k) // = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k) // = Sin(Mpi/2^k) // // Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k) // = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k) // = Cos(Mpi/2^k) // // Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) // // // Step 4 // ====== // 0 <= M < 2^(k+1) // There are 2^(k+1) Sin entries in a table. // There are 2^(k+1) Cos entries in a table. // // Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup. // // // Step 5 // ====== // Calculate Cos(r) and Sin(r) by polynomial approximation. // // Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos // Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin // // and the coefficients q1, q2 and p1, p2 are stored in a table // // // Calculate // Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) // // as follows // // S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k) // rsq = r*r // // // P = p1 + r^2p2 // Q = q1 + r^2q2 // // rcub = r * rsq // Sin(r) = r + rcub * P // = r + r^3p1 + r^5p2 = Sin(r) // // P = r + rcub * P // // Answer = S[m] Cos(r) + C[m] P // // Cos(r) = 1 + rsq Q // Cos(r) = 1 + r^2 Q // Cos(r) = 1 + r^2 (q1 + r^2q2) // Cos(r) = 1 + r^2q1 + r^4q2 // // S[m] Cos(r) = S[m](1 + rsq Q) // S[m] Cos(r) = S[m] + S[m] rsq Q // S[m] Cos(r) = S[m] + s_rsq Q // Q = S[m] + s_rsq Q // // Then, // // Answer = Q + C[m] P // Registers used //============================================================== // general input registers: // r14 -> r19 // r32 -> r49 // predicate registers used: // p6 -> p14 // floating-point registers used // f9 -> f15 // f32 -> f100 // Assembly macros //============================================================== cisf_Arg = f8 cisf_Sin_res = f9 cisf_Cos_res = f8 cisf_NORM_f8 = f10 cisf_W = f11 cisf_int_Nfloat = f12 cisf_Nfloat = f13 cisf_r = f14 cisf_r_exact = f68 cisf_rsq = f15 cisf_rcub = f32 cisf_Inv_Pi_by_16 = f33 cisf_Pi_by_16_hi = f34 cisf_Pi_by_16_lo = f35 cisf_Inv_Pi_by_64 = f36 cisf_Pi_by_64_hi = f37 cisf_Pi_by_64_lo = f38 cisf_P1 = f39 cisf_Q1 = f40 cisf_P2 = f41 cisf_Q2 = f42 cisf_P3 = f43 cisf_Q3 = f44 cisf_P4 = f45 cisf_Q4 = f46 cisf_P_temp1 = f47 cisf_P_temp2 = f48 cisf_Q_temp1 = f49 cisf_Q_temp2 = f50 cisf_P = f51 cisf_SIG_INV_PI_BY_16_2TO61 = f52 cisf_RSHF_2TO61 = f53 cisf_RSHF = f54 cisf_2TOM61 = f55 cisf_NFLOAT = f56 cisf_W_2TO61_RSH = f57 cisf_tmp = f58 cisf_Sm_sin = f59 cisf_Cm_sin = f60 cisf_Sm_cos = f61 cisf_Cm_cos = f62 cisf_srsq_sin = f63 cisf_srsq_cos = f64 cisf_Q_sin = f65 cisf_Q_cos = f66 cisf_Q = f67 ///////////////////////////////////////////////////////////// cisf_pResSin = r33 cisf_pResCos = r34 cisf_exp_limit = r35 cisf_r_signexp = r36 cisf_AD_beta_table = r37 cisf_r_sincos = r38 cisf_r_exp = r39 cisf_r_17_ones = r40 cisf_GR_sig_inv_pi_by_16 = r14 cisf_GR_rshf_2to61 = r15 cisf_GR_rshf = r16 cisf_GR_exp_2tom61 = r17 cisf_GR_n = r18 cisf_GR_n_sin = r19 cisf_GR_m_sin = r41 cisf_GR_32m_sin = r41 cisf_GR_n_cos = r42 cisf_GR_m_cos = r43 cisf_GR_32m_cos = r43 cisf_AD_2_sin = r44 cisf_AD_2_cos = r45 cisf_gr_tmp = r46 GR_SAVE_B0 = r47 GR_SAVE_GP = r48 rB0_SAVED = r49 GR_SAVE_PFS = r50 GR_SAVE_PR = r51 cisf_AD_1 = r52 RODATA .align 16 // Pi/16 parts LOCAL_OBJECT_START(double_cisf_pi) data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part LOCAL_OBJECT_END(double_cisf_pi) // Coefficients for polynomials LOCAL_OBJECT_START(double_cisf_pq_k4) data8 0x3F810FABB668E9A2 // P2 data8 0x3FA552E3D6DE75C9 // Q2 data8 0xBFC555554447BC7F // P1 data8 0xBFDFFFFFC447610A // Q1 LOCAL_OBJECT_END(double_cisf_pq_k4) // Sincos table (S[m], C[m]) LOCAL_OBJECT_START(double_sin_cos_beta_k4) data8 0x0000000000000000 // sin ( 0 Pi / 16 ) data8 0x3FF0000000000000 // cos ( 0 Pi / 16 ) // data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 ) data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 ) // data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 ) data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 ) // data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 ) data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 ) // data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 ) data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 ) // data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 ) data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 ) // data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 ) data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 ) // data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 ) data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 ) // data8 0x3FF0000000000000 // sin ( 8 Pi / 16 ) data8 0x0000000000000000 // cos ( 8 Pi / 16 ) // data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 ) data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 ) // data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 ) data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 ) // data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 ) data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 ) // data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 ) data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 ) // data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 ) data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 ) // data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 ) data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 ) // data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 ) data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 ) // data8 0x0000000000000000 // sin ( 16 Pi / 16 ) data8 0xBFF0000000000000 // cos ( 16 Pi / 16 ) // data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 ) data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 ) // data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 ) data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 ) // data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 ) data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 ) // data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 ) data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 ) // data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 ) data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 ) // data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 ) data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 ) // data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 ) data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 ) // data8 0xBFF0000000000000 // sin ( 24 Pi / 16 ) data8 0x0000000000000000 // cos ( 24 Pi / 16 ) // data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 ) data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 ) // data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 ) data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 ) // data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 ) data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 ) // data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 ) data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 ) // data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 ) data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 ) // data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 ) data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 ) // data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 ) data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 ) // data8 0x0000000000000000 // sin ( 32 Pi / 16 ) data8 0x3FF0000000000000 // cos ( 32 Pi / 16 ) LOCAL_OBJECT_END(double_sin_cos_beta_k4) .section .text GLOBAL_IEEE754_ENTRY(sincosf) // cis_GR_sig_inv_pi_by_16 = significand of 16/pi { .mlx alloc GR_SAVE_PFS = ar.pfs, 0, 21, 0, 0 movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // 16/pi signd } // cis_GR_rshf_2to61 = 1.1000 2^(63+63-2) { .mlx addl cisf_AD_1 = @ltoff(double_cisf_pi), gp movl cisf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2) };; { .mfi ld8 cisf_AD_1 = [cisf_AD_1] fnorm.s1 cisf_NORM_f8 = cisf_Arg cmp.eq p13, p14 = r0, r0 // p13 set for sincos } // cis_GR_exp_2tom61 = exponent of scaling factor 2^-61 { .mib mov cisf_GR_exp_2tom61 = 0xffff-61 nop.i 0 br.cond.sptk _CISF_COMMON };; GLOBAL_IEEE754_END(sincosf) GLOBAL_LIBM_ENTRY(__libm_sincosf) { .mlx // cisf_GR_sig_inv_pi_by_16 = significand of 16/pi alloc GR_SAVE_PFS = ar.pfs,0,21,0,0 movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A } // cisf_GR_rshf_2to61 = 1.1000 2^(63+63-2) { .mlx addl cisf_AD_1 = @ltoff(double_cisf_pi), gp movl cisf_GR_rshf_2to61 = 0x47b8000000000000 };; // p14 set for __libm_sincos and cis { .mfi ld8 cisf_AD_1 = [cisf_AD_1] fnorm.s1 cisf_NORM_f8 = cisf_Arg cmp.eq p14, p13 = r0, r0 } // cisf_GR_exp_2tom61 = exponent of scaling factor 2^-61 { .mib mov cisf_GR_exp_2tom61 = 0xffff-61 nop.i 0 nop.b 0 };; _CISF_COMMON: // Form two constants we need // 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand // 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand // fcmp used to set denormal, and invalid on snans { .mfi setf.sig cisf_SIG_INV_PI_BY_16_2TO61 = cisf_GR_sig_inv_pi_by_16 fclass.m p6,p0 = cisf_Arg, 0xe7//if x=0,inf,nan addl cisf_gr_tmp = -1, r0 } // cisf_GR_rshf = 1.1000 2^63 for right shift { .mlx setf.d cisf_RSHF_2TO61 = cisf_GR_rshf_2to61 movl cisf_GR_rshf = 0x43e8000000000000 };; // Form another constant // 2^-61 for scaling Nfloat // 0x10017 is register_bias + 24. // So if f8 >= 2^24, go to large args routine { .mmi getf.exp cisf_r_signexp = cisf_Arg setf.exp cisf_2TOM61 = cisf_GR_exp_2tom61 mov cisf_exp_limit = 0x10017 };; // Load the two pieces of pi/16 // Form another constant // 1.1000...000 * 2^63, the right shift constant { .mmb ldfe cisf_Pi_by_16_hi = [cisf_AD_1],16 setf.d cisf_RSHF = cisf_GR_rshf (p6) br.cond.spnt _CISF_SPECIAL_ARGS };; { .mmi ldfe cisf_Pi_by_16_lo = [cisf_AD_1],16 setf.sig cisf_tmp = cisf_gr_tmp //constant for inexact set nop.i 0 };; // Start loading P, Q coefficients { .mmi ldfpd cisf_P2,cisf_Q2 = [cisf_AD_1],16 nop.m 0 dep.z cisf_r_exp = cisf_r_signexp, 0, 17 };; // p10 is true if we must call routines to handle larger arguments // p10 is true if f8 exp is >= 0x10017 { .mmb ldfpd cisf_P1,cisf_Q1 = [cisf_AD_1], 16 cmp.ge p10, p0 = cisf_r_exp, cisf_exp_limit (p10) br.cond.spnt _CISF_LARGE_ARGS // go to |x| >= 2^24 path };; // cisf_W = x * cisf_Inv_Pi_by_16 // Multiply x by scaled 16/pi and add large const to shift integer part of W to // rightmost bits of significand { .mfi nop.m 0 fma.s1 cisf_W_2TO61_RSH = cisf_NORM_f8,cisf_SIG_INV_PI_BY_16_2TO61,cisf_RSHF_2TO61 nop.i 0 };; // cisf_NFLOAT = Round_Int_Nearest(cisf_W) { .mfi nop.m 0 fms.s1 cisf_NFLOAT = cisf_W_2TO61_RSH,cisf_2TOM61,cisf_RSHF nop.i 0 };; // N = (int)cisf_int_Nfloat { .mfi getf.sig cisf_GR_n = cisf_W_2TO61_RSH nop.f 0 nop.i 0 };; // Add 2^(k-1) (which is in cisf_r_sincos) to N // cisf_r = -cisf_Nfloat * cisf_Pi_by_16_hi + x // cisf_r = cisf_r -cisf_Nfloat * cisf_Pi_by_16_lo { .mfi add cisf_GR_n_cos = 0x8, cisf_GR_n fnma.s1 cisf_r = cisf_NFLOAT, cisf_Pi_by_16_hi, cisf_NORM_f8 nop.i 0 };; //Get M (least k+1 bits of N) { .mmi and cisf_GR_m_sin = 0x1f,cisf_GR_n and cisf_GR_m_cos = 0x1f,cisf_GR_n_cos nop.i 0 };; { .mmi shladd cisf_AD_2_cos = cisf_GR_m_cos,4, cisf_AD_1 shladd cisf_AD_2_sin = cisf_GR_m_sin,4, cisf_AD_1 nop.i 0 };; // den. input to set uflow { .mmf ldfpd cisf_Sm_sin, cisf_Cm_sin = [cisf_AD_2_sin] ldfpd cisf_Sm_cos, cisf_Cm_cos = [cisf_AD_2_cos] fclass.m.unc p10,p0 = cisf_Arg,0x0b };; { .mfi nop.m 0 fma.s1 cisf_rsq = cisf_r, cisf_r, f0 // get r^2 nop.i 0 } { .mfi nop.m 0 fmpy.s0 cisf_tmp = cisf_tmp,cisf_tmp // inexact flag nop.i 0 };; { .mmf nop.m 0 nop.m 0 fnma.s1 cisf_r_exact = cisf_NFLOAT, cisf_Pi_by_16_lo, cisf_r };; { .mfi nop.m 0 fma.s1 cisf_P = cisf_rsq, cisf_P2, cisf_P1 nop.i 0 } { .mfi nop.m 0 fma.s1 cisf_Q = cisf_rsq, cisf_Q2, cisf_Q1 nop.i 0 };; { .mfi nop.m 0 fmpy.s1 cisf_rcub = cisf_r_exact, cisf_rsq // get r^3 nop.i 0 };; { .mfi nop.m 0 fmpy.s1 cisf_srsq_sin = cisf_Sm_sin,cisf_rsq nop.i 0 } { .mfi nop.m 0 fmpy.s1 cisf_srsq_cos = cisf_Sm_cos,cisf_rsq nop.i 0 };; { .mfi nop.m 0 fma.s1 cisf_P = cisf_rcub,cisf_P,cisf_r_exact nop.i 0 };; { .mfi nop.m 0 fma.s1 cisf_Q_sin = cisf_srsq_sin,cisf_Q, cisf_Sm_sin nop.i 0 } { .mfi nop.m 0 fma.s1 cisf_Q_cos = cisf_srsq_cos,cisf_Q, cisf_Sm_cos nop.i 0 };; // If den. arg, force underflow to be set { .mfi nop.m 0 (p10) fmpy.s.s0 cisf_tmp = cisf_Arg,cisf_Arg nop.i 0 };; //Final sin { .mfi nop.m 0 fma.s.s0 cisf_Sin_res = cisf_Cm_sin, cisf_P, cisf_Q_sin nop.i 0 } //Final cos { .mfb nop.m 0 fma.s.s0 cisf_Cos_res = cisf_Cm_cos, cisf_P, cisf_Q_cos (p14) br.cond.sptk _CISF_RETURN //com. exit for __libm_sincos and cis main path };; { .mmb stfs [cisf_pResSin] = cisf_Sin_res stfs [cisf_pResCos] = cisf_Cos_res br.ret.sptk b0 // common exit for sincos main path };; _CISF_SPECIAL_ARGS: // sinf(+/-0) = +/-0 // sinf(Inf) = NaN // sinf(NaN) = NaN { .mfi nop.m 999 fma.s.s0 cisf_Sin_res = cisf_Arg, f0, f0 // sinf(+/-0,NaN,Inf) nop.i 999 };; // cosf(+/-0) = 1.0 // cosf(Inf) = NaN // cosf(NaN) = NaN { .mfb nop.m 999 fma.s.s0 cisf_Cos_res = cisf_Arg, f0, f1 // cosf(+/-0,NaN,Inf) (p14) br.cond.sptk _CISF_RETURN //spec exit for __libm_sincos and cis main path };; { .mmb stfs [cisf_pResSin] = cisf_Sin_res stfs [cisf_pResCos] = cisf_Cos_res br.ret.sptk b0 // special exit for sincos main path };; // exit for sincos // NOTE! r8 and r9 used only because of compiler issue // connected with float point complex function arguments pass // After fix of this issue this operations can be deleted _CISF_RETURN: { .mmb getf.s r8 = cisf_Cos_res getf.s r9 = cisf_Sin_res br.ret.sptk b0 // exit for sincos };; GLOBAL_LIBM_END(__libm_sincosf) //// |x| > 2^24 path /////// .proc _CISF_LARGE_ARGS _CISF_LARGE_ARGS: .prologue { .mfi nop.m 0 nop.f 0 .save ar.pfs, GR_SAVE_PFS mov GR_SAVE_PFS = ar.pfs };; { .mfi mov GR_SAVE_GP = gp nop.f 0 .save b0, GR_SAVE_B0 mov GR_SAVE_B0 = b0 };; .body // Call of huge arguments sincos { .mib nop.m 0 mov GR_SAVE_PR = pr br.call.sptk b0 = __libm_sincos_large };; { .mfi mov gp = GR_SAVE_GP nop.f 0 mov pr = GR_SAVE_PR, 0x1fffe } ;; { .mfi nop.m 0 nop.f 0 mov b0 = GR_SAVE_B0 } ;; { .mfi nop.m 0 fma.s.s0 cisf_Cos_res = cisf_Cos_res, f1, f0 mov ar.pfs = GR_SAVE_PFS } // exit for |x| > 2^24 path (__libm_sincos and cis) { .mfb nop.m 0 fma.s.s0 cisf_Sin_res = cisf_Sin_res, f1, f0 (p14) br.cond.sptk _CISF_RETURN };; { .mmb stfs [cisf_pResSin] = cisf_Sin_res stfs [cisf_pResCos] = cisf_Cos_res br.ret.sptk b0 // exit for sincos |x| > 2^24 path };; .endp _CISF_LARGE_ARGS .type __libm_sincos_large#,@function .global __libm_sincos_large#