.file "libm_sincos_large.s" // Copyright (c) 2002 - 2003, Intel Corporation // All rights reserved. // // Contributed 2002 by the Intel Numerics Group, Intel Corporation // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm. // // History //============================================================== // 02/15/02 Initial version // 05/13/02 Changed interface to __libm_pi_by_2_reduce // 02/10/03 Reordered header: .section, .global, .proc, .align; // used data8 for long double table values // 05/15/03 Reformatted data tables // // // Overview of operation //============================================================== // // These functions calculate the sin and cos for inputs // greater than 2^10 // // __libm_sin_large# // __libm_cos_large# // They accept argument in f8 // and return result in f8 without final rounding // // __libm_sincos_large# // It accepts argument in f8 // and returns cos in f8 and sin in f9 without final rounding // // //********************************************************************* // // Accuracy: Within .7 ulps for 80-bit floating point values // Very accurate for double precision values // //********************************************************************* // // Resources Used: // // Floating-Point Registers: f8 as Input Value, f8 and f9 as Return Values // f32-f103 // // General Purpose Registers: // r32-r43 // r44-r45 (Used to pass arguments to pi_by_2 reduce routine) // // Predicate Registers: p6-p13 // //********************************************************************* // // IEEE Special Conditions: // // Denormal fault raised on denormal inputs // Overflow exceptions do not occur // Underflow exceptions raised when appropriate for sin // (No specialized error handling for this routine) // Inexact raised when appropriate by algorithm // // sin(SNaN) = QNaN // sin(QNaN) = QNaN // sin(inf) = QNaN // sin(+/-0) = +/-0 // cos(inf) = QNaN // cos(SNaN) = QNaN // cos(QNaN) = QNaN // cos(0) = 1 // //********************************************************************* // // Mathematical Description // ======================== // // The computation of FSIN and FCOS is best handled in one piece of // code. The main reason is that given any argument Arg, computation // of trigonometric functions first calculate N and an approximation // to alpha where // // Arg = N pi/2 + alpha, |alpha| <= pi/4. // // Since // // cos( Arg ) = sin( (N+1) pi/2 + alpha ), // // therefore, the code for computing sine will produce cosine as long // as 1 is added to N immediately after the argument reduction // process. // // Let M = N if sine // N+1 if cosine. // // Now, given // // Arg = M pi/2 + alpha, |alpha| <= pi/4, // // let I = M mod 4, or I be the two lsb of M when M is represented // as 2's complement. I = [i_0 i_1]. Then // // sin( Arg ) = (-1)^i_0 sin( alpha ) if i_1 = 0, // = (-1)^i_0 cos( alpha ) if i_1 = 1. // // For example: // if M = -1, I = 11 // sin ((-pi/2 + alpha) = (-1) cos (alpha) // if M = 0, I = 00 // sin (alpha) = sin (alpha) // if M = 1, I = 01 // sin (pi/2 + alpha) = cos (alpha) // if M = 2, I = 10 // sin (pi + alpha) = (-1) sin (alpha) // if M = 3, I = 11 // sin ((3/2)pi + alpha) = (-1) cos (alpha) // // The value of alpha is obtained by argument reduction and // represented by two working precision numbers r and c where // // alpha = r + c accurately. // // The reduction method is described in a previous write up. // The argument reduction scheme identifies 4 cases. For Cases 2 // and 4, because |alpha| is small, sin(r+c) and cos(r+c) can be // computed very easily by 2 or 3 terms of the Taylor series // expansion as follows: // // Case 2: // ------- // // sin(r + c) = r + c - r^3/6 accurately // cos(r + c) = 1 - 2^(-67) accurately // // Case 4: // ------- // // sin(r + c) = r + c - r^3/6 + r^5/120 accurately // cos(r + c) = 1 - r^2/2 + r^4/24 accurately // // The only cases left are Cases 1 and 3 of the argument reduction // procedure. These two cases will be merged since after the // argument is reduced in either cases, we have the reduced argument // represented as r + c and that the magnitude |r + c| is not small // enough to allow the usage of a very short approximation. // // The required calculation is either // // sin(r + c) = sin(r) + correction, or // cos(r + c) = cos(r) + correction. // // Specifically, // // sin(r + c) = sin(r) + c sin'(r) + O(c^2) // = sin(r) + c cos (r) + O(c^2) // = sin(r) + c(1 - r^2/2) accurately. // Similarly, // // cos(r + c) = cos(r) - c sin(r) + O(c^2) // = cos(r) - c(r - r^3/6) accurately. // // We therefore concentrate on accurately calculating sin(r) and // cos(r) for a working-precision number r, |r| <= pi/4 to within // 0.1% or so. // // The greatest challenge of this task is that the second terms of // the Taylor series // // r - r^3/3! + r^r/5! - ... // // and // // 1 - r^2/2! + r^4/4! - ... // // are not very small when |r| is close to pi/4 and the rounding // errors will be a concern if simple polynomial accumulation is // used. When |r| < 2^-3, however, the second terms will be small // enough (6 bits or so of right shift) that a normal Horner // recurrence suffices. Hence there are two cases that we consider // in the accurate computation of sin(r) and cos(r), |r| <= pi/4. // // Case small_r: |r| < 2^(-3) // -------------------------- // // Since Arg = M pi/4 + r + c accurately, and M mod 4 is [i_0 i_1], // we have // // sin(Arg) = (-1)^i_0 * sin(r + c) if i_1 = 0 // = (-1)^i_0 * cos(r + c) if i_1 = 1 // // can be accurately approximated by // // sin(Arg) = (-1)^i_0 * [sin(r) + c] if i_1 = 0 // = (-1)^i_0 * [cos(r) - c*r] if i_1 = 1 // // because |r| is small and thus the second terms in the correction // are unneccessary. // // Finally, sin(r) and cos(r) are approximated by polynomials of // moderate lengths. // // sin(r) = r + S_1 r^3 + S_2 r^5 + ... + S_5 r^11 // cos(r) = 1 + C_1 r^2 + C_2 r^4 + ... + C_5 r^10 // // We can make use of predicates to selectively calculate // sin(r) or cos(r) based on i_1. // // Case normal_r: 2^(-3) <= |r| <= pi/4 // ------------------------------------ // // This case is more likely than the previous one if one considers // r to be uniformly distributed in [-pi/4 pi/4]. Again, // // sin(Arg) = (-1)^i_0 * sin(r + c) if i_1 = 0 // = (-1)^i_0 * cos(r + c) if i_1 = 1. // // Because |r| is now larger, we need one extra term in the // correction. sin(Arg) can be accurately approximated by // // sin(Arg) = (-1)^i_0 * [sin(r) + c(1-r^2/2)] if i_1 = 0 // = (-1)^i_0 * [cos(r) - c*r*(1 - r^2/6)] i_1 = 1. // // Finally, sin(r) and cos(r) are approximated by polynomials of // moderate lengths. // // sin(r) = r + PP_1_hi r^3 + PP_1_lo r^3 + // PP_2 r^5 + ... + PP_8 r^17 // // cos(r) = 1 + QQ_1 r^2 + QQ_2 r^4 + ... + QQ_8 r^16 // // where PP_1_hi is only about 16 bits long and QQ_1 is -1/2. // The crux in accurate computation is to calculate // // r + PP_1_hi r^3 or 1 + QQ_1 r^2 // // accurately as two pieces: U_hi and U_lo. The way to achieve this // is to obtain r_hi as a 10 sig. bit number that approximates r to // roughly 8 bits or so of accuracy. (One convenient way is // // r_hi := frcpa( frcpa( r ) ).) // // This way, // // r + PP_1_hi r^3 = r + PP_1_hi r_hi^3 + // PP_1_hi (r^3 - r_hi^3) // = [r + PP_1_hi r_hi^3] + // [PP_1_hi (r - r_hi) // (r^2 + r_hi r + r_hi^2) ] // = U_hi + U_lo // // Since r_hi is only 10 bit long and PP_1_hi is only 16 bit long, // PP_1_hi * r_hi^3 is only at most 46 bit long and thus computed // exactly. Furthermore, r and PP_1_hi r_hi^3 are of opposite sign // and that there is no more than 8 bit shift off between r and // PP_1_hi * r_hi^3. Hence the sum, U_hi, is representable and thus // calculated without any error. Finally, the fact that // // |U_lo| <= 2^(-8) |U_hi| // // says that U_hi + U_lo is approximating r + PP_1_hi r^3 to roughly // 8 extra bits of accuracy. // // Similarly, // // 1 + QQ_1 r^2 = [1 + QQ_1 r_hi^2] + // [QQ_1 (r - r_hi)(r + r_hi)] // = U_hi + U_lo. // // Summarizing, we calculate r_hi = frcpa( frcpa( r ) ). // // If i_1 = 0, then // // U_hi := r + PP_1_hi * r_hi^3 // U_lo := PP_1_hi * (r - r_hi) * (r^2 + r*r_hi + r_hi^2) // poly := PP_1_lo r^3 + PP_2 r^5 + ... + PP_8 r^17 // correction := c * ( 1 + C_1 r^2 ) // // Else ...i_1 = 1 // // U_hi := 1 + QQ_1 * r_hi * r_hi // U_lo := QQ_1 * (r - r_hi) * (r + r_hi) // poly := QQ_2 * r^4 + QQ_3 * r^6 + ... + QQ_8 r^16 // correction := -c * r * (1 + S_1 * r^2) // // End // // Finally, // // V := poly + ( U_lo + correction ) // // / U_hi + V if i_0 = 0 // result := | // \ (-U_hi) - V if i_0 = 1 // // It is important that in the last step, negation of U_hi is // performed prior to the subtraction which is to be performed in // the user-set rounding mode. // // // Algorithmic Description // ======================= // // The argument reduction algorithm is tightly integrated into FSIN // and FCOS which share the same code. The following is complete and // self-contained. The argument reduction description given // previously is repeated below. // // // Step 0. Initialization. // // If FSIN is invoked, set N_inc := 0; else if FCOS is invoked, // set N_inc := 1. // // Step 1. Check for exceptional and special cases. // // * If Arg is +-0, +-inf, NaN, NaT, go to Step 10 for special // handling. // * If |Arg| < 2^24, go to Step 2 for reduction of moderate // arguments. This is the most likely case. // * If |Arg| < 2^63, go to Step 8 for pre-reduction of large // arguments. // * If |Arg| >= 2^63, go to Step 10 for special handling. // // Step 2. Reduction of moderate arguments. // // If |Arg| < pi/4 ...quick branch // N_fix := N_inc (integer) // r := Arg // c := 0.0 // Branch to Step 4, Case_1_complete // Else ...cf. argument reduction // N := Arg * two_by_PI (fp) // N_fix := fcvt.fx( N ) (int) // N := fcvt.xf( N_fix ) // N_fix := N_fix + N_inc // s := Arg - N * P_1 (first piece of pi/2) // w := -N * P_2 (second piece of pi/2) // // If |s| >= 2^(-33) // go to Step 3, Case_1_reduce // Else // go to Step 7, Case_2_reduce // Endif // Endif // // Step 3. Case_1_reduce. // // r := s + w // c := (s - r) + w ...observe order // // Step 4. Case_1_complete // // ...At this point, the reduced argument alpha is // ...accurately represented as r + c. // If |r| < 2^(-3), go to Step 6, small_r. // // Step 5. Normal_r. // // Let [i_0 i_1] by the 2 lsb of N_fix. // FR_rsq := r * r // r_hi := frcpa( frcpa( r ) ) // r_lo := r - r_hi // // If i_1 = 0, then // poly := r*FR_rsq*(PP_1_lo + FR_rsq*(PP_2 + ... FR_rsq*PP_8)) // U_hi := r + PP_1_hi*r_hi*r_hi*r_hi ...any order // U_lo := PP_1_hi*r_lo*(r*r + r*r_hi + r_hi*r_hi) // correction := c + c*C_1*FR_rsq ...any order // Else // poly := FR_rsq*FR_rsq*(QQ_2 + FR_rsq*(QQ_3 + ... + FR_rsq*QQ_8)) // U_hi := 1 + QQ_1 * r_hi * r_hi ...any order // U_lo := QQ_1 * r_lo * (r + r_hi) // correction := -c*(r + S_1*FR_rsq*r) ...any order // Endif // // V := poly + (U_lo + correction) ...observe order // // result := (i_0 == 0? 1.0 : -1.0) // // Last instruction in user-set rounding mode // // result := (i_0 == 0? result*U_hi + V : // result*U_hi - V) // // Return // // Step 6. Small_r. // // ...Use flush to zero mode without causing exception // Let [i_0 i_1] be the two lsb of N_fix. // // FR_rsq := r * r // // If i_1 = 0 then // z := FR_rsq*FR_rsq; z := FR_rsq*z *r // poly_lo := S_3 + FR_rsq*(S_4 + FR_rsq*S_5) // poly_hi := r*FR_rsq*(S_1 + FR_rsq*S_2) // correction := c // result := r // Else // z := FR_rsq*FR_rsq; z := FR_rsq*z // poly_lo := C_3 + FR_rsq*(C_4 + FR_rsq*C_5) // poly_hi := FR_rsq*(C_1 + FR_rsq*C_2) // correction := -c*r // result := 1 // Endif // // poly := poly_hi + (z * poly_lo + correction) // // If i_0 = 1, result := -result // // Last operation. Perform in user-set rounding mode // // result := (i_0 == 0? result + poly : // result - poly ) // Return // // Step 7. Case_2_reduce. // // ...Refer to the write up for argument reduction for // ...rationale. The reduction algorithm below is taken from // ...argument reduction description and integrated this. // // w := N*P_3 // U_1 := N*P_2 + w ...FMA // U_2 := (N*P_2 - U_1) + w ...2 FMA // ...U_1 + U_2 is N*(P_2+P_3) accurately // // r := s - U_1 // c := ( (s - r) - U_1 ) - U_2 // // ...The mathematical sum r + c approximates the reduced // ...argument accurately. Note that although compared to // ...Case 1, this case requires much more work to reduce // ...the argument, the subsequent calculation needed for // ...any of the trigonometric function is very little because // ...|alpha| < 1.01*2^(-33) and thus two terms of the // ...Taylor series expansion suffices. // // If i_1 = 0 then // poly := c + S_1 * r * r * r ...any order // result := r // Else // poly := -2^(-67) // result := 1.0 // Endif // // If i_0 = 1, result := -result // // Last operation. Perform in user-set rounding mode // // result := (i_0 == 0? result + poly : // result - poly ) // // Return // // // Step 8. Pre-reduction of large arguments. // // ...Again, the following reduction procedure was described // ...in the separate write up for argument reduction, which // ...is tightly integrated here. // N_0 := Arg * Inv_P_0 // N_0_fix := fcvt.fx( N_0 ) // N_0 := fcvt.xf( N_0_fix) // Arg' := Arg - N_0 * P_0 // w := N_0 * d_1 // N := Arg' * two_by_PI // N_fix := fcvt.fx( N ) // N := fcvt.xf( N_fix ) // N_fix := N_fix + N_inc // // s := Arg' - N * P_1 // w := w - N * P_2 // // If |s| >= 2^(-14) // go to Step 3 // Else // go to Step 9 // Endif // // Step 9. Case_4_reduce. // // ...first obtain N_0*d_1 and -N*P_2 accurately // U_hi := N_0 * d_1 V_hi := -N*P_2 // U_lo := N_0 * d_1 - U_hi V_lo := -N*P_2 - U_hi ...FMAs // // ...compute the contribution from N_0*d_1 and -N*P_3 // w := -N*P_3 // w := w + N_0*d_2 // t := U_lo + V_lo + w ...any order // // ...at this point, the mathematical value // ...s + U_hi + V_hi + t approximates the true reduced argument // ...accurately. Just need to compute this accurately. // // ...Calculate U_hi + V_hi accurately: // A := U_hi + V_hi // if |U_hi| >= |V_hi| then // a := (U_hi - A) + V_hi // else // a := (V_hi - A) + U_hi // endif // ...order in computing "a" must be observed. This branch is // ...best implemented by predicates. // ...A + a is U_hi + V_hi accurately. Moreover, "a" is // ...much smaller than A: |a| <= (1/2)ulp(A). // // ...Just need to calculate s + A + a + t // C_hi := s + A t := t + a // C_lo := (s - C_hi) + A // C_lo := C_lo + t // // ...Final steps for reduction // r := C_hi + C_lo // c := (C_hi - r) + C_lo // // ...At this point, we have r and c // ...And all we need is a couple of terms of the corresponding // ...Taylor series. // // If i_1 = 0 // poly := c + r*FR_rsq*(S_1 + FR_rsq*S_2) // result := r // Else // poly := FR_rsq*(C_1 + FR_rsq*C_2) // result := 1 // Endif // // If i_0 = 1, result := -result // // Last operation. Perform in user-set rounding mode // // result := (i_0 == 0? result + poly : // result - poly ) // Return // // Large Arguments: For arguments above 2**63, a Payne-Hanek // style argument reduction is used and pi_by_2 reduce is called. // RODATA .align 16 LOCAL_OBJECT_START(FSINCOS_CONSTANTS) data4 0x4B800000 // two**24 data4 0xCB800000 // -two**24 data4 0x00000000 // pad data4 0x00000000 // pad data8 0xA2F9836E4E44152A, 0x00003FFE // Inv_pi_by_2 data8 0xC84D32B0CE81B9F1, 0x00004016 // P_0 data8 0xC90FDAA22168C235, 0x00003FFF // P_1 data8 0xECE675D1FC8F8CBB, 0x0000BFBD // P_2 data8 0xB7ED8FBBACC19C60, 0x0000BF7C // P_3 data4 0x5F000000 // two**63 data4 0xDF000000 // -two**63 data4 0x00000000 // pad data4 0x00000000 // pad data8 0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0 data8 0x8D848E89DBD171A1, 0x0000BFBF // d_1 data8 0xD5394C3618A66F8E, 0x0000BF7C // d_2 data8 0xC90FDAA22168C234, 0x00003FFE // pi_by_4 data8 0xC90FDAA22168C234, 0x0000BFFE // neg_pi_by_4 data4 0x3E000000 // two**-3 data4 0xBE000000 // -two**-3 data4 0x00000000 // pad data4 0x00000000 // pad data4 0x2F000000 // two**-33 data4 0xAF000000 // -two**-33 data4 0x9E000000 // -two**-67 data4 0x00000000 // pad data8 0xCC8ABEBCA21C0BC9, 0x00003FCE // PP_8 data8 0xD7468A05720221DA, 0x0000BFD6 // PP_7 data8 0xB092382F640AD517, 0x00003FDE // PP_6 data8 0xD7322B47D1EB75A4, 0x0000BFE5 // PP_5 data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1 data8 0xAAAA000000000000, 0x0000BFFC // PP_1_hi data8 0xB8EF1D2ABAF69EEA, 0x00003FEC // PP_4 data8 0xD00D00D00D03BB69, 0x0000BFF2 // PP_3 data8 0x8888888888888962, 0x00003FF8 // PP_2 data8 0xAAAAAAAAAAAB0000, 0x0000BFEC // PP_1_lo data8 0xD56232EFC2B0FE52, 0x00003FD2 // QQ_8 data8 0xC9C99ABA2B48DCA6, 0x0000BFDA // QQ_7 data8 0x8F76C6509C716658, 0x00003FE2 // QQ_6 data8 0x93F27DBAFDA8D0FC, 0x0000BFE9 // QQ_5 data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1 data8 0x8000000000000000, 0x0000BFFE // QQ_1 data8 0xD00D00D00C6E5041, 0x00003FEF // QQ_4 data8 0xB60B60B60B607F60, 0x0000BFF5 // QQ_3 data8 0xAAAAAAAAAAAAAA9B, 0x00003FFA // QQ_2 data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1 data8 0xAAAAAAAAAAAA719F, 0x00003FFA // C_2 data8 0xB60B60B60356F994, 0x0000BFF5 // C_3 data8 0xD00CFFD5B2385EA9, 0x00003FEF // C_4 data8 0x93E4BD18292A14CD, 0x0000BFE9 // C_5 data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1 data8 0x88888888888868DB, 0x00003FF8 // S_2 data8 0xD00D00D0055EFD4B, 0x0000BFF2 // S_3 data8 0xB8EF1C5D839730B9, 0x00003FEC // S_4 data8 0xD71EA3A4E5B3F492, 0x0000BFE5 // S_5 data4 0x38800000 // two**-14 data4 0xB8800000 // -two**-14 LOCAL_OBJECT_END(FSINCOS_CONSTANTS) // sin and cos registers // FR FR_Input_X = f8 FR_r = f8 FR_c = f9 FR_Two_to_63 = f32 FR_Two_to_24 = f33 FR_Pi_by_4 = f33 FR_Two_to_M14 = f34 FR_Two_to_M33 = f35 FR_Neg_Two_to_24 = f36 FR_Neg_Pi_by_4 = f36 FR_Neg_Two_to_M14 = f37 FR_Neg_Two_to_M33 = f38 FR_Neg_Two_to_M67 = f39 FR_Inv_pi_by_2 = f40 FR_N_float = f41 FR_N_fix = f42 FR_P_1 = f43 FR_P_2 = f44 FR_P_3 = f45 FR_s = f46 FR_w = f47 FR_d_2 = f48 FR_prelim = f49 FR_Z = f50 FR_A = f51 FR_a = f52 FR_t = f53 FR_U_1 = f54 FR_U_2 = f55 FR_C_1 = f56 FR_C_2 = f57 FR_C_3 = f58 FR_C_4 = f59 FR_C_5 = f60 FR_S_1 = f61 FR_S_2 = f62 FR_S_3 = f63 FR_S_4 = f64 FR_S_5 = f65 FR_poly_hi = f66 FR_poly_lo = f67 FR_r_hi = f68 FR_r_lo = f69 FR_rsq = f70 FR_r_cubed = f71 FR_C_hi = f72 FR_N_0 = f73 FR_d_1 = f74 FR_V = f75 FR_V_hi = f75 FR_V_lo = f76 FR_U_hi = f77 FR_U_lo = f78 FR_U_hiabs = f79 FR_V_hiabs = f80 FR_PP_8 = f81 FR_QQ_8 = f81 FR_PP_7 = f82 FR_QQ_7 = f82 FR_PP_6 = f83 FR_QQ_6 = f83 FR_PP_5 = f84 FR_QQ_5 = f84 FR_PP_4 = f85 FR_QQ_4 = f85 FR_PP_3 = f86 FR_QQ_3 = f86 FR_PP_2 = f87 FR_QQ_2 = f87 FR_QQ_1 = f88 FR_N_0_fix = f89 FR_Inv_P_0 = f90 FR_corr = f91 FR_poly = f92 FR_Neg_Two_to_M3 = f93 FR_Two_to_M3 = f94 FR_Neg_Two_to_63 = f94 FR_P_0 = f95 FR_C_lo = f96 FR_PP_1 = f97 FR_PP_1_lo = f98 FR_ArgPrime = f99 // GR GR_Table_Base = r32 GR_Table_Base1 = r33 GR_i_0 = r34 GR_i_1 = r35 GR_N_Inc = r36 GR_Sin_or_Cos = r37 GR_SAVE_B0 = r39 GR_SAVE_GP = r40 GR_SAVE_PFS = r41 // sincos combined routine registers // GR GR_SINCOS_SAVE_PFS = r32 GR_SINCOS_SAVE_B0 = r33 GR_SINCOS_SAVE_GP = r34 // FR FR_SINCOS_ARG = f100 FR_SINCOS_RES_SIN = f101 .section .text GLOBAL_LIBM_ENTRY(__libm_sincos_large) { .mfi alloc GR_SINCOS_SAVE_PFS = ar.pfs,0,3,0,0 fma.s1 FR_SINCOS_ARG = f8, f1, f0 // Save argument for sin and cos mov GR_SINCOS_SAVE_B0 = b0 };; { .mfb mov GR_SINCOS_SAVE_GP = gp nop.f 0 br.call.sptk b0 = __libm_sin_large // Call sin };; { .mfi nop.m 0 fma.s1 FR_SINCOS_RES_SIN = f8, f1, f0 // Save sin result nop.i 0 };; { .mfb nop.m 0 fma.s1 f8 = FR_SINCOS_ARG, f1, f0 // Arg for cos br.call.sptk b0 = __libm_cos_large // Call cos };; { .mfi mov gp = GR_SINCOS_SAVE_GP fma.s1 f9 = FR_SINCOS_RES_SIN, f1, f0 // Out sin result mov b0 = GR_SINCOS_SAVE_B0 };; { .mib nop.m 0 mov ar.pfs = GR_SINCOS_SAVE_PFS br.ret.sptk b0 // sincos_large exit };; GLOBAL_LIBM_END(__libm_sincos_large) GLOBAL_LIBM_ENTRY(__libm_sin_large) { .mlx alloc GR_Table_Base = ar.pfs,0,12,2,0 movl GR_Sin_or_Cos = 0x0 ;; } { .mmi nop.m 999 addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp nop.i 999 } ;; { .mmi ld8 GR_Table_Base = [GR_Table_Base] nop.m 999 nop.i 999 } ;; { .mib nop.m 999 nop.i 999 br.cond.sptk SINCOS_CONTINUE ;; } GLOBAL_LIBM_END(__libm_sin_large) GLOBAL_LIBM_ENTRY(__libm_cos_large) { .mlx alloc GR_Table_Base= ar.pfs,0,12,2,0 movl GR_Sin_or_Cos = 0x1 ;; } { .mmi nop.m 999 addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp nop.i 999 } ;; { .mmi ld8 GR_Table_Base = [GR_Table_Base] nop.m 999 nop.i 999 } ;; // // Load Table Address // SINCOS_CONTINUE: { .mmi add GR_Table_Base1 = 96, GR_Table_Base ldfs FR_Two_to_24 = [GR_Table_Base], 4 nop.i 999 } ;; { .mmi nop.m 999 // // Load 2**24, load 2**63. // ldfs FR_Neg_Two_to_24 = [GR_Table_Base], 12 mov r41 = ar.pfs ;; } { .mfi ldfs FR_Two_to_63 = [GR_Table_Base1], 4 // // Check for unnormals - unsupported operands. We do not want // to generate denormal exception // Check for NatVals, QNaNs, SNaNs, +/-Infs // Check for EM unsupporteds // Check for Zero // fclass.m.unc p6, p8 = FR_Input_X, 0x1E3 mov r40 = gp ;; } { .mfi nop.m 999 fclass.nm.unc p8, p0 = FR_Input_X, 0x1FF // GR_Sin_or_Cos denotes mov r39 = b0 } { .mfb ldfs FR_Neg_Two_to_63 = [GR_Table_Base1], 12 fclass.m.unc p10, p0 = FR_Input_X, 0x007 (p6) br.cond.spnt SINCOS_SPECIAL ;; } { .mib nop.m 999 nop.i 999 (p8) br.cond.spnt SINCOS_SPECIAL ;; } { .mib nop.m 999 nop.i 999 // // Branch if +/- NaN, Inf. // Load -2**24, load -2**63. // (p10) br.cond.spnt SINCOS_ZERO ;; } { .mmb ldfe FR_Inv_pi_by_2 = [GR_Table_Base], 16 ldfe FR_Inv_P_0 = [GR_Table_Base1], 16 nop.b 999 ;; } { .mmb nop.m 999 ldfe FR_d_1 = [GR_Table_Base1], 16 nop.b 999 ;; } // // Raise possible denormal operand flag with useful fcmp // Is x <= -2**63 // Load Inv_P_0 for pre-reduction // Load Inv_pi_by_2 // { .mmb ldfe FR_P_0 = [GR_Table_Base], 16 ldfe FR_d_2 = [GR_Table_Base1], 16 nop.b 999 ;; } // // Load P_0 // Load d_1 // Is x >= 2**63 // Is x <= -2**24? // { .mmi ldfe FR_P_1 = [GR_Table_Base], 16 ;; // // Load P_1 // Load d_2 // Is x >= 2**24? // ldfe FR_P_2 = [GR_Table_Base], 16 nop.i 999 ;; } { .mmf nop.m 999 ldfe FR_P_3 = [GR_Table_Base], 16 fcmp.le.unc.s1 p7, p8 = FR_Input_X, FR_Neg_Two_to_24 } { .mfi nop.m 999 // // Branch if +/- zero. // Decide about the paths to take: // If -2**24 < FR_Input_X < 2**24 - CASE 1 OR 2 // OTHERWISE - CASE 3 OR 4 // fcmp.le.unc.s1 p10, p11 = FR_Input_X, FR_Neg_Two_to_63 nop.i 999 ;; } { .mfi nop.m 999 (p8) fcmp.ge.s1 p7, p0 = FR_Input_X, FR_Two_to_24 nop.i 999 } { .mfi ldfe FR_Pi_by_4 = [GR_Table_Base1], 16 (p11) fcmp.ge.s1 p10, p0 = FR_Input_X, FR_Two_to_63 nop.i 999 ;; } { .mmi ldfe FR_Neg_Pi_by_4 = [GR_Table_Base1], 16 ;; ldfs FR_Two_to_M3 = [GR_Table_Base1], 4 nop.i 999 ;; } { .mib ldfs FR_Neg_Two_to_M3 = [GR_Table_Base1], 12 nop.i 999 // // Load P_2 // Load P_3 // Load pi_by_4 // Load neg_pi_by_4 // Load 2**(-3) // Load -2**(-3). // (p10) br.cond.spnt SINCOS_ARG_TOO_LARGE ;; } { .mib nop.m 999 nop.i 999 // // Branch out if x >= 2**63. Use Payne-Hanek Reduction // (p7) br.cond.spnt SINCOS_LARGER_ARG ;; } { .mfi nop.m 999 // // Branch if Arg <= -2**24 or Arg >= 2**24 and use pre-reduction. // fma.s1 FR_N_float = FR_Input_X, FR_Inv_pi_by_2, f0 nop.i 999 ;; } { .mfi nop.m 999 fcmp.lt.unc.s1 p6, p7 = FR_Input_X, FR_Pi_by_4 nop.i 999 ;; } { .mfi nop.m 999 // // Select the case when |Arg| < pi/4 // Else Select the case when |Arg| >= pi/4 // fcvt.fx.s1 FR_N_fix = FR_N_float nop.i 999 ;; } { .mfi nop.m 999 // // N = Arg * 2/pi // Check if Arg < pi/4 // (p6) fcmp.gt.s1 p6, p7 = FR_Input_X, FR_Neg_Pi_by_4 nop.i 999 ;; } // // Case 2: Convert integer N_fix back to normalized floating-point value. // Case 1: p8 is only affected when p6 is set // { .mfi (p7) ldfs FR_Two_to_M33 = [GR_Table_Base1], 4 // // Grab the integer part of N and call it N_fix // (p6) fmerge.se FR_r = FR_Input_X, FR_Input_X // If |x| < pi/4, r = x and c = 0 // lf |x| < pi/4, is x < 2**(-3). // r = Arg // c = 0 (p6) mov GR_N_Inc = GR_Sin_or_Cos ;; } { .mmf nop.m 999 (p7) ldfs FR_Neg_Two_to_M33 = [GR_Table_Base1], 4 (p6) fmerge.se FR_c = f0, f0 } { .mfi nop.m 999 (p6) fcmp.lt.unc.s1 p8, p9 = FR_Input_X, FR_Two_to_M3 nop.i 999 ;; } { .mfi nop.m 999 // // lf |x| < pi/4, is -2**(-3)< x < 2**(-3) - set p8. // If |x| >= pi/4, // Create the right N for |x| < pi/4 and otherwise // Case 2: Place integer part of N in GP register // (p7) fcvt.xf FR_N_float = FR_N_fix nop.i 999 ;; } { .mmf nop.m 999 (p7) getf.sig GR_N_Inc = FR_N_fix (p8) fcmp.gt.s1 p8, p0 = FR_Input_X, FR_Neg_Two_to_M3 ;; } { .mib nop.m 999 nop.i 999 // // Load 2**(-33), -2**(-33) // (p8) br.cond.spnt SINCOS_SMALL_R ;; } { .mib nop.m 999 nop.i 999 (p6) br.cond.sptk SINCOS_NORMAL_R ;; } // // if |x| < pi/4, branch based on |x| < 2**(-3) or otherwise. // // // In this branch, |x| >= pi/4. // { .mfi ldfs FR_Neg_Two_to_M67 = [GR_Table_Base1], 8 // // Load -2**(-67) // fnma.s1 FR_s = FR_N_float, FR_P_1, FR_Input_X // // w = N * P_2 // s = -N * P_1 + Arg // add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos } { .mfi nop.m 999 fma.s1 FR_w = FR_N_float, FR_P_2, f0 nop.i 999 ;; } { .mfi nop.m 999 // // Adjust N_fix by N_inc to determine whether sine or // cosine is being calculated // fcmp.lt.unc.s1 p7, p6 = FR_s, FR_Two_to_M33 nop.i 999 ;; } { .mfi nop.m 999 (p7) fcmp.gt.s1 p7, p6 = FR_s, FR_Neg_Two_to_M33 nop.i 999 ;; } { .mfi nop.m 999 // Remember x >= pi/4. // Is s <= -2**(-33) or s >= 2**(-33) (p6) // or -2**(-33) < s < 2**(-33) (p7) (p6) fms.s1 FR_r = FR_s, f1, FR_w nop.i 999 } { .mfi nop.m 999 (p7) fma.s1 FR_w = FR_N_float, FR_P_3, f0 nop.i 999 ;; } { .mfi nop.m 999 (p7) fma.s1 FR_U_1 = FR_N_float, FR_P_2, FR_w nop.i 999 } { .mfi nop.m 999 (p6) fms.s1 FR_c = FR_s, f1, FR_r nop.i 999 ;; } { .mfi nop.m 999 // // For big s: r = s - w: No futher reduction is necessary // For small s: w = N * P_3 (change sign) More reduction // (p6) fcmp.lt.unc.s1 p8, p9 = FR_r, FR_Two_to_M3 nop.i 999 ;; } { .mfi nop.m 999 (p8) fcmp.gt.s1 p8, p9 = FR_r, FR_Neg_Two_to_M3 nop.i 999 ;; } { .mfi nop.m 999 (p7) fms.s1 FR_r = FR_s, f1, FR_U_1 nop.i 999 } { .mfb nop.m 999 // // For big s: Is |r| < 2**(-3)? // For big s: c = S - r // For small s: U_1 = N * P_2 + w // // If p8 is set, prepare to branch to Small_R. // If p9 is set, prepare to branch to Normal_R. // For big s, r is complete here. // (p6) fms.s1 FR_c = FR_c, f1, FR_w // // For big s: c = c + w (w has not been negated.) // For small s: r = S - U_1 // (p8) br.cond.spnt SINCOS_SMALL_R ;; } { .mib nop.m 999 nop.i 999 (p9) br.cond.sptk SINCOS_NORMAL_R ;; } { .mfi (p7) add GR_Table_Base1 = 224, GR_Table_Base1 // // Branch to SINCOS_SMALL_R or SINCOS_NORMAL_R // (p7) fms.s1 FR_U_2 = FR_N_float, FR_P_2, FR_U_1 // // c = S - U_1 // r = S_1 * r // // (p7) extr.u GR_i_1 = GR_N_Inc, 0, 1 } { .mmi nop.m 999 ;; // // Get [i_0,i_1] - two lsb of N_fix_gr. // Do dummy fmpy so inexact is always set. // (p7) cmp.eq.unc p9, p10 = 0x0, GR_i_1 (p7) extr.u GR_i_0 = GR_N_Inc, 1, 1 ;; } // // For small s: U_2 = N * P_2 - U_1 // S_1 stored constant - grab the one stored with the // coefficients. // { .mfi (p7) ldfe FR_S_1 = [GR_Table_Base1], 16 // // Check if i_1 and i_0 != 0 // (p10) fma.s1 FR_poly = f0, f1, FR_Neg_Two_to_M67 (p7) cmp.eq.unc p11, p12 = 0x0, GR_i_0 ;; } { .mfi nop.m 999 (p7) fms.s1 FR_s = FR_s, f1, FR_r nop.i 999 } { .mfi nop.m 999 // // S = S - r // U_2 = U_2 + w // load S_1 // (p7) fma.s1 FR_rsq = FR_r, FR_r, f0 nop.i 999 ;; } { .mfi nop.m 999 (p7) fma.s1 FR_U_2 = FR_U_2, f1, FR_w nop.i 999 } { .mfi nop.m 999 //(p7) fmerge.se FR_Input_X = FR_r, FR_r (p7) fmerge.se FR_prelim = FR_r, FR_r nop.i 999 ;; } { .mfi nop.m 999 //(p10) fma.s1 FR_Input_X = f0, f1, f1 (p10) fma.s1 FR_prelim = f0, f1, f1 nop.i 999 ;; } { .mfi nop.m 999 // // FR_rsq = r * r // Save r as the result. // (p7) fms.s1 FR_c = FR_s, f1, FR_U_1 nop.i 999 ;; } { .mfi nop.m 999 // // if ( i_1 ==0) poly = c + S_1*r*r*r // else Result = 1 // //(p12) fnma.s1 FR_Input_X = FR_Input_X, f1, f0 (p12) fnma.s1 FR_prelim = FR_prelim, f1, f0 nop.i 999 } { .mfi nop.m 999 (p7) fma.s1 FR_r = FR_S_1, FR_r, f0 nop.i 999 ;; } { .mfi nop.m 999 (p7) fma.d.s1 FR_S_1 = FR_S_1, FR_S_1, f0 nop.i 999 ;; } { .mfi nop.m 999 // // If i_1 != 0, poly = 2**(-67) // (p7) fms.s1 FR_c = FR_c, f1, FR_U_2 nop.i 999 ;; } { .mfi nop.m 999 // // c = c - U_2 // (p9) fma.s1 FR_poly = FR_r, FR_rsq, FR_c nop.i 999 ;; } { .mfi nop.m 999 // // i_0 != 0, so Result = -Result // (p11) fma.s1 FR_Input_X = FR_prelim, f1, FR_poly nop.i 999 ;; } { .mfb nop.m 999 (p12) fms.s1 FR_Input_X = FR_prelim, f1, FR_poly // // if (i_0 == 0), Result = Result + poly // else Result = Result - poly // br.ret.sptk b0 ;; } SINCOS_LARGER_ARG: { .mfi nop.m 999 fma.s1 FR_N_0 = FR_Input_X, FR_Inv_P_0, f0 nop.i 999 } ;; // This path for argument > 2*24 // Adjust table_ptr1 to beginning of table. // { .mmi nop.m 999 addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp nop.i 999 } ;; { .mmi ld8 GR_Table_Base = [GR_Table_Base] nop.m 999 nop.i 999 } ;; // // Point to 2*-14 // N_0 = Arg * Inv_P_0 // { .mmi add GR_Table_Base = 688, GR_Table_Base ;; ldfs FR_Two_to_M14 = [GR_Table_Base], 4 nop.i 999 ;; } { .mfi ldfs FR_Neg_Two_to_M14 = [GR_Table_Base], 0 nop.f 999 nop.i 999 ;; } { .mfi nop.m 999 // // Load values 2**(-14) and -2**(-14) // fcvt.fx.s1 FR_N_0_fix = FR_N_0 nop.i 999 ;; } { .mfi nop.m 999 // // N_0_fix = integer part of N_0 // fcvt.xf FR_N_0 = FR_N_0_fix nop.i 999 ;; } { .mfi nop.m 999 // // Make N_0 the integer part // fnma.s1 FR_ArgPrime = FR_N_0, FR_P_0, FR_Input_X nop.i 999 } { .mfi nop.m 999 fma.s1 FR_w = FR_N_0, FR_d_1, f0 nop.i 999 ;; } { .mfi nop.m 999 // // Arg' = -N_0 * P_0 + Arg // w = N_0 * d_1 // fma.s1 FR_N_float = FR_ArgPrime, FR_Inv_pi_by_2, f0 nop.i 999 ;; } { .mfi nop.m 999 // // N = A' * 2/pi // fcvt.fx.s1 FR_N_fix = FR_N_float nop.i 999 ;; } { .mfi nop.m 999 // // N_fix is the integer part // fcvt.xf FR_N_float = FR_N_fix nop.i 999 ;; } { .mfi getf.sig GR_N_Inc = FR_N_fix nop.f 999 nop.i 999 ;; } { .mii nop.m 999 nop.i 999 ;; add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos ;; } { .mfi nop.m 999 // // N is the integer part of the reduced-reduced argument. // Put the integer in a GP register // fnma.s1 FR_s = FR_N_float, FR_P_1, FR_ArgPrime nop.i 999 } { .mfi nop.m 999 fnma.s1 FR_w = FR_N_float, FR_P_2, FR_w nop.i 999 ;; } { .mfi nop.m 999 // // s = -N*P_1 + Arg' // w = -N*P_2 + w // N_fix_gr = N_fix_gr + N_inc // fcmp.lt.unc.s1 p9, p8 = FR_s, FR_Two_to_M14 nop.i 999 ;; } { .mfi nop.m 999 (p9) fcmp.gt.s1 p9, p8 = FR_s, FR_Neg_Two_to_M14 nop.i 999 ;; } { .mfi nop.m 999 // // For |s| > 2**(-14) r = S + w (r complete) // Else U_hi = N_0 * d_1 // (p9) fma.s1 FR_V_hi = FR_N_float, FR_P_2, f0 nop.i 999 } { .mfi nop.m 999 (p9) fma.s1 FR_U_hi = FR_N_0, FR_d_1, f0 nop.i 999 ;; } { .mfi nop.m 999 // // Either S <= -2**(-14) or S >= 2**(-14) // or -2**(-14) < s < 2**(-14) // (p8) fma.s1 FR_r = FR_s, f1, FR_w nop.i 999 } { .mfi nop.m 999 (p9) fma.s1 FR_w = FR_N_float, FR_P_3, f0 nop.i 999 ;; } { .mfi nop.m 999 // // We need abs of both U_hi and V_hi - don't // worry about switched sign of V_hi. // (p9) fms.s1 FR_A = FR_U_hi, f1, FR_V_hi nop.i 999 } { .mfi nop.m 999 // // Big s: finish up c = (S - r) + w (c complete) // Case 4: A = U_hi + V_hi // Note: Worry about switched sign of V_hi, so subtract instead of add. // (p9) fnma.s1 FR_V_lo = FR_N_float, FR_P_2, FR_V_hi nop.i 999 ;; } { .mfi nop.m 999 (p9) fms.s1 FR_U_lo = FR_N_0, FR_d_1, FR_U_hi nop.i 999 ;; } { .mfi nop.m 999 (p9) fmerge.s FR_V_hiabs = f0, FR_V_hi nop.i 999 } { .mfi nop.m 999 // For big s: c = S - r // For small s do more work: U_lo = N_0 * d_1 - U_hi // (p9) fmerge.s FR_U_hiabs = f0, FR_U_hi nop.i 999 ;; } { .mfi nop.m 999 // // For big s: Is |r| < 2**(-3) // For big s: if p12 set, prepare to branch to Small_R. // For big s: If p13 set, prepare to branch to Normal_R. // (p8) fms.s1 FR_c = FR_s, f1, FR_r nop.i 999 } { .mfi nop.m 999 // // For small S: V_hi = N * P_2 // w = N * P_3 // Note the product does not include the (-) as in the writeup // so (-) missing for V_hi and w. // (p8) fcmp.lt.unc.s1 p12, p13 = FR_r, FR_Two_to_M3 nop.i 999 ;; } { .mfi nop.m 999 (p12) fcmp.gt.s1 p12, p13 = FR_r, FR_Neg_Two_to_M3 nop.i 999 ;; } { .mfi nop.m 999 (p8) fma.s1 FR_c = FR_c, f1, FR_w nop.i 999 } { .mfb nop.m 999 (p9) fms.s1 FR_w = FR_N_0, FR_d_2, FR_w (p12) br.cond.spnt SINCOS_SMALL_R ;; } { .mib nop.m 999 nop.i 999 (p13) br.cond.sptk SINCOS_NORMAL_R ;; } { .mfi nop.m 999 // // Big s: Vector off when |r| < 2**(-3). Recall that p8 will be true. // The remaining stuff is for Case 4. // Small s: V_lo = N * P_2 + U_hi (U_hi is in place of V_hi in writeup) // Note: the (-) is still missing for V_lo. // Small s: w = w + N_0 * d_2 // Note: the (-) is now incorporated in w. // (p9) fcmp.ge.unc.s1 p10, p11 = FR_U_hiabs, FR_V_hiabs extr.u GR_i_1 = GR_N_Inc, 0, 1 ;; } { .mfi nop.m 999 // // C_hi = S + A // (p9) fma.s1 FR_t = FR_U_lo, f1, FR_V_lo extr.u GR_i_0 = GR_N_Inc, 1, 1 ;; } { .mfi nop.m 999 // // t = U_lo + V_lo // // (p10) fms.s1 FR_a = FR_U_hi, f1, FR_A nop.i 999 ;; } { .mfi nop.m 999 (p11) fma.s1 FR_a = FR_V_hi, f1, FR_A nop.i 999 } ;; { .mmi nop.m 999 addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp nop.i 999 } ;; { .mmi ld8 GR_Table_Base = [GR_Table_Base] nop.m 999 nop.i 999 } ;; { .mfi add GR_Table_Base = 528, GR_Table_Base // // Is U_hiabs >= V_hiabs? // (p9) fma.s1 FR_C_hi = FR_s, f1, FR_A nop.i 999 ;; } { .mmi ldfe FR_C_1 = [GR_Table_Base], 16 ;; ldfe FR_C_2 = [GR_Table_Base], 64 nop.i 999 ;; } { .mmf nop.m 999 // // c = c + C_lo finished. // Load C_2 // ldfe FR_S_1 = [GR_Table_Base], 16 // // C_lo = S - C_hi // fma.s1 FR_t = FR_t, f1, FR_w ;; } // // r and c have been computed. // Make sure ftz mode is set - should be automatic when using wre // |r| < 2**(-3) // Get [i_0,i_1] - two lsb of N_fix. // Load S_1 // { .mfi ldfe FR_S_2 = [GR_Table_Base], 64 // // t = t + w // (p10) fms.s1 FR_a = FR_a, f1, FR_V_hi cmp.eq.unc p9, p10 = 0x0, GR_i_0 } { .mfi nop.m 999 // // For larger u than v: a = U_hi - A // Else a = V_hi - A (do an add to account for missing (-) on V_hi // fms.s1 FR_C_lo = FR_s, f1, FR_C_hi nop.i 999 ;; } { .mfi nop.m 999 (p11) fms.s1 FR_a = FR_U_hi, f1, FR_a cmp.eq.unc p11, p12 = 0x0, GR_i_1 } { .mfi nop.m 999 // // If u > v: a = (U_hi - A) + V_hi // Else a = (V_hi - A) + U_hi // In each case account for negative missing from V_hi. // fma.s1 FR_C_lo = FR_C_lo, f1, FR_A nop.i 999 ;; } { .mfi nop.m 999 // // C_lo = (S - C_hi) + A // fma.s1 FR_t = FR_t, f1, FR_a nop.i 999 ;; } { .mfi nop.m 999 // // t = t + a // fma.s1 FR_C_lo = FR_C_lo, f1, FR_t nop.i 999 ;; } { .mfi nop.m 999 // // C_lo = C_lo + t // Adjust Table_Base to beginning of table // fma.s1 FR_r = FR_C_hi, f1, FR_C_lo nop.i 999 ;; } { .mfi nop.m 999 // // Load S_2 // fma.s1 FR_rsq = FR_r, FR_r, f0 nop.i 999 } { .mfi nop.m 999 // // Table_Base points to C_1 // r = C_hi + C_lo // fms.s1 FR_c = FR_C_hi, f1, FR_r nop.i 999 ;; } { .mfi nop.m 999 // // if i_1 ==0: poly = S_2 * FR_rsq + S_1 // else poly = C_2 * FR_rsq + C_1 // //(p11) fma.s1 FR_Input_X = f0, f1, FR_r (p11) fma.s1 FR_prelim = f0, f1, FR_r nop.i 999 ;; } { .mfi nop.m 999 //(p12) fma.s1 FR_Input_X = f0, f1, f1 (p12) fma.s1 FR_prelim = f0, f1, f1 nop.i 999 ;; } { .mfi nop.m 999 // // Compute r_cube = FR_rsq * r // (p11) fma.s1 FR_poly = FR_rsq, FR_S_2, FR_S_1 nop.i 999 ;; } { .mfi nop.m 999 (p12) fma.s1 FR_poly = FR_rsq, FR_C_2, FR_C_1 nop.i 999 } { .mfi nop.m 999 // // Compute FR_rsq = r * r // Is i_1 == 0 ? // fma.s1 FR_r_cubed = FR_rsq, FR_r, f0 nop.i 999 ;; } { .mfi nop.m 999 // // c = C_hi - r // Load C_1 // fma.s1 FR_c = FR_c, f1, FR_C_lo nop.i 999 } { .mfi nop.m 999 // // if i_1 ==0: poly = r_cube * poly + c // else poly = FR_rsq * poly // //(p10) fms.s1 FR_Input_X = f0, f1, FR_Input_X (p10) fms.s1 FR_prelim = f0, f1, FR_prelim nop.i 999 ;; } { .mfi nop.m 999 // // if i_1 ==0: Result = r // else Result = 1.0 // (p11) fma.s1 FR_poly = FR_r_cubed, FR_poly, FR_c nop.i 999 ;; } { .mfi nop.m 999 (p12) fma.s1 FR_poly = FR_rsq, FR_poly, f0 nop.i 999 ;; } { .mfi nop.m 999 // // if i_0 !=0: Result = -Result // (p9) fma.s1 FR_Input_X = FR_prelim, f1, FR_poly nop.i 999 ;; } { .mfb nop.m 999 (p10) fms.s1 FR_Input_X = FR_prelim, f1, FR_poly // // if i_0 == 0: Result = Result + poly // else Result = Result - poly // br.ret.sptk b0 ;; } SINCOS_SMALL_R: { .mii nop.m 999 extr.u GR_i_1 = GR_N_Inc, 0, 1 ;; // // // Compare both i_1 and i_0 with 0. // if i_1 == 0, set p9. // if i_0 == 0, set p11. // cmp.eq.unc p9, p10 = 0x0, GR_i_1 ;; } { .mfi nop.m 999 fma.s1 FR_rsq = FR_r, FR_r, f0 extr.u GR_i_0 = GR_N_Inc, 1, 1 ;; } { .mfi nop.m 999 // // Z = Z * FR_rsq // (p10) fnma.s1 FR_c = FR_c, FR_r, f0 cmp.eq.unc p11, p12 = 0x0, GR_i_0 } ;; // ****************************************************************** // ****************************************************************** // ****************************************************************** // r and c have been computed. // We know whether this is the sine or cosine routine. // Make sure ftz mode is set - should be automatic when using wre // |r| < 2**(-3) // // Set table_ptr1 to beginning of constant table. // Get [i_0,i_1] - two lsb of N_fix_gr. // { .mmi nop.m 999 addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp nop.i 999 } ;; { .mmi ld8 GR_Table_Base = [GR_Table_Base] nop.m 999 nop.i 999 } ;; // // Set table_ptr1 to point to S_5. // Set table_ptr1 to point to C_5. // Compute FR_rsq = r * r // { .mfi (p9) add GR_Table_Base = 672, GR_Table_Base (p10) fmerge.s FR_r = f1, f1 (p10) add GR_Table_Base = 592, GR_Table_Base ;; } // // Set table_ptr1 to point to S_5. // Set table_ptr1 to point to C_5. // { .mmi (p9) ldfe FR_S_5 = [GR_Table_Base], -16 ;; // // if (i_1 == 0) load S_5 // if (i_1 != 0) load C_5 // (p9) ldfe FR_S_4 = [GR_Table_Base], -16 nop.i 999 ;; } { .mmf (p10) ldfe FR_C_5 = [GR_Table_Base], -16 // // Z = FR_rsq * FR_rsq // (p9) ldfe FR_S_3 = [GR_Table_Base], -16 // // Compute FR_rsq = r * r // if (i_1 == 0) load S_4 // if (i_1 != 0) load C_4 // fma.s1 FR_Z = FR_rsq, FR_rsq, f0 ;; } // // if (i_1 == 0) load S_3 // if (i_1 != 0) load C_3 // { .mmi (p9) ldfe FR_S_2 = [GR_Table_Base], -16 ;; // // if (i_1 == 0) load S_2 // if (i_1 != 0) load C_2 // (p9) ldfe FR_S_1 = [GR_Table_Base], -16 nop.i 999 } { .mmi (p10) ldfe FR_C_4 = [GR_Table_Base], -16 ;; (p10) ldfe FR_C_3 = [GR_Table_Base], -16 nop.i 999 ;; } { .mmi (p10) ldfe FR_C_2 = [GR_Table_Base], -16 ;; (p10) ldfe FR_C_1 = [GR_Table_Base], -16 nop.i 999 } { .mfi nop.m 999 // // if (i_1 != 0): // poly_lo = FR_rsq * C_5 + C_4 // poly_hi = FR_rsq * C_2 + C_1 // (p9) fma.s1 FR_Z = FR_Z, FR_r, f0 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1 == 0) load S_1 // if (i_1 != 0) load C_1 // (p9) fma.s1 FR_poly_lo = FR_rsq, FR_S_5, FR_S_4 nop.i 999 } { .mfi nop.m 999 // // c = -c * r // dummy fmpy's to flag inexact. // (p9) fma.d.s1 FR_S_4 = FR_S_4, FR_S_4, f0 nop.i 999 ;; } { .mfi nop.m 999 // // poly_lo = FR_rsq * poly_lo + C_3 // poly_hi = FR_rsq * poly_hi // fma.s1 FR_Z = FR_Z, FR_rsq, f0 nop.i 999 ;; } { .mfi nop.m 999 (p9) fma.s1 FR_poly_hi = FR_rsq, FR_S_2, FR_S_1 nop.i 999 } { .mfi nop.m 999 // // if (i_1 == 0): // poly_lo = FR_rsq * S_5 + S_4 // poly_hi = FR_rsq * S_2 + S_1 // (p10) fma.s1 FR_poly_lo = FR_rsq, FR_C_5, FR_C_4 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1 == 0): // Z = Z * r for only one of the small r cases - not there // in original implementation notes. // (p9) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_S_3 nop.i 999 ;; } { .mfi nop.m 999 (p10) fma.s1 FR_poly_hi = FR_rsq, FR_C_2, FR_C_1 nop.i 999 } { .mfi nop.m 999 (p10) fma.d.s1 FR_C_1 = FR_C_1, FR_C_1, f0 nop.i 999 ;; } { .mfi nop.m 999 (p9) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0 nop.i 999 } { .mfi nop.m 999 // // poly_lo = FR_rsq * poly_lo + S_3 // poly_hi = FR_rsq * poly_hi // (p10) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_C_3 nop.i 999 ;; } { .mfi nop.m 999 (p10) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1 == 0): dummy fmpy's to flag inexact // r = 1 // (p9) fma.s1 FR_poly_hi = FR_r, FR_poly_hi, f0 nop.i 999 } { .mfi nop.m 999 // // poly_hi = r * poly_hi // fma.s1 FR_poly = FR_Z, FR_poly_lo, FR_c nop.i 999 ;; } { .mfi nop.m 999 (p12) fms.s1 FR_r = f0, f1, FR_r nop.i 999 ;; } { .mfi nop.m 999 // // poly_hi = Z * poly_lo + c // if i_0 == 1: r = -r // fma.s1 FR_poly = FR_poly, f1, FR_poly_hi nop.i 999 ;; } { .mfi nop.m 999 (p12) fms.s1 FR_Input_X = FR_r, f1, FR_poly nop.i 999 } { .mfb nop.m 999 // // poly = poly + poly_hi // (p11) fma.s1 FR_Input_X = FR_r, f1, FR_poly // // if (i_0 == 0) Result = r + poly // if (i_0 != 0) Result = r - poly // br.ret.sptk b0 ;; } SINCOS_NORMAL_R: { .mii nop.m 999 extr.u GR_i_1 = GR_N_Inc, 0, 1 ;; // // Set table_ptr1 and table_ptr2 to base address of // constant table. cmp.eq.unc p9, p10 = 0x0, GR_i_1 ;; } { .mfi nop.m 999 fma.s1 FR_rsq = FR_r, FR_r, f0 extr.u GR_i_0 = GR_N_Inc, 1, 1 ;; } { .mfi nop.m 999 frcpa.s1 FR_r_hi, p6 = f1, FR_r cmp.eq.unc p11, p12 = 0x0, GR_i_0 } ;; // ****************************************************************** // ****************************************************************** // ****************************************************************** // // r and c have been computed. // We known whether this is the sine or cosine routine. // Make sure ftz mode is set - should be automatic when using wre // Get [i_0,i_1] - two lsb of N_fix_gr alone. // { .mmi nop.m 999 addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp nop.i 999 } ;; { .mmi ld8 GR_Table_Base = [GR_Table_Base] nop.m 999 nop.i 999 } ;; { .mfi (p10) add GR_Table_Base = 384, GR_Table_Base //(p12) fms.s1 FR_Input_X = f0, f1, f1 (p12) fms.s1 FR_prelim = f0, f1, f1 (p9) add GR_Table_Base = 224, GR_Table_Base ;; } { .mmf nop.m 999 (p10) ldfe FR_QQ_8 = [GR_Table_Base], 16 // // if (i_1==0) poly = poly * FR_rsq + PP_1_lo // else poly = FR_rsq * poly // //(p11) fma.s1 FR_Input_X = f0, f1, f1 ;; (p11) fma.s1 FR_prelim = f0, f1, f1 ;; } { .mmf (p10) ldfe FR_QQ_7 = [GR_Table_Base], 16 // // Adjust table pointers based on i_0 // Compute rsq = r * r // (p9) ldfe FR_PP_8 = [GR_Table_Base], 16 fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 ;; } { .mmf (p9) ldfe FR_PP_7 = [GR_Table_Base], 16 (p10) ldfe FR_QQ_6 = [GR_Table_Base], 16 // // Load PP_8 and QQ_8; PP_7 and QQ_7 // frcpa.s1 FR_r_hi, p6 = f1, FR_r_hi ;; } // // if (i_1==0) poly = PP_7 + FR_rsq * PP_8. // else poly = QQ_7 + FR_rsq * QQ_8. // { .mmb (p9) ldfe FR_PP_6 = [GR_Table_Base], 16 (p10) ldfe FR_QQ_5 = [GR_Table_Base], 16 nop.b 999 ;; } { .mmb (p9) ldfe FR_PP_5 = [GR_Table_Base], 16 (p10) ldfe FR_S_1 = [GR_Table_Base], 16 nop.b 999 ;; } { .mmb (p10) ldfe FR_QQ_1 = [GR_Table_Base], 16 (p9) ldfe FR_C_1 = [GR_Table_Base], 16 nop.b 999 ;; } { .mmi (p10) ldfe FR_QQ_4 = [GR_Table_Base], 16 ;; (p9) ldfe FR_PP_1 = [GR_Table_Base], 16 nop.i 999 ;; } { .mmf (p10) ldfe FR_QQ_3 = [GR_Table_Base], 16 // // if (i_1=0) corr = corr + c*c // else corr = corr * c // (p9) ldfe FR_PP_4 = [GR_Table_Base], 16 (p10) fma.s1 FR_poly = FR_rsq, FR_QQ_8, FR_QQ_7 ;; } // // if (i_1=0) poly = rsq * poly + PP_5 // else poly = rsq * poly + QQ_5 // Load PP_4 or QQ_4 // { .mmf (p9) ldfe FR_PP_3 = [GR_Table_Base], 16 (p10) ldfe FR_QQ_2 = [GR_Table_Base], 16 // // r_hi = frcpa(frcpa(r)). // r_cube = r * FR_rsq. // (p9) fma.s1 FR_poly = FR_rsq, FR_PP_8, FR_PP_7 ;; } // // Do dummy multiplies so inexact is always set. // { .mfi (p9) ldfe FR_PP_2 = [GR_Table_Base], 16 // // r_lo = r - r_hi // (p9) fma.s1 FR_U_lo = FR_r_hi, FR_r_hi, f0 nop.i 999 ;; } { .mmf nop.m 999 (p9) ldfe FR_PP_1_lo = [GR_Table_Base], 16 (p10) fma.s1 FR_corr = FR_S_1, FR_r_cubed, FR_r } { .mfi nop.m 999 (p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_6 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1=0) U_lo = r_hi * r_hi // else U_lo = r_hi + r // (p9) fma.s1 FR_corr = FR_C_1, FR_rsq, f0 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1=0) corr = C_1 * rsq // else corr = S_1 * r_cubed + r // (p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_6 nop.i 999 } { .mfi nop.m 999 (p10) fma.s1 FR_U_lo = FR_r_hi, f1, FR_r nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1=0) U_hi = r_hi + U_hi // else U_hi = QQ_1 * U_hi + 1 // (p9) fma.s1 FR_U_lo = FR_r, FR_r_hi, FR_U_lo nop.i 999 } { .mfi nop.m 999 // // U_hi = r_hi * r_hi // fms.s1 FR_r_lo = FR_r, f1, FR_r_hi nop.i 999 ;; } { .mfi nop.m 999 // // Load PP_1, PP_6, PP_5, and C_1 // Load QQ_1, QQ_6, QQ_5, and S_1 // fma.s1 FR_U_hi = FR_r_hi, FR_r_hi, f0 nop.i 999 ;; } { .mfi nop.m 999 (p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_5 nop.i 999 } { .mfi nop.m 999 (p10) fnma.s1 FR_corr = FR_corr, FR_c, f0 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1=0) U_lo = r * r_hi + U_lo // else U_lo = r_lo * U_lo // (p9) fma.s1 FR_corr = FR_corr, FR_c, FR_c nop.i 999 ;; } { .mfi nop.m 999 (p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_5 nop.i 999 } { .mfi nop.m 999 // // if (i_1 =0) U_hi = r + U_hi // if (i_1 =0) U_lo = r_lo * U_lo // // (p9) fma.d.s1 FR_PP_5 = FR_PP_5, FR_PP_4, f0 nop.i 999 ;; } { .mfi nop.m 999 (p9) fma.s1 FR_U_lo = FR_r, FR_r, FR_U_lo nop.i 999 } { .mfi nop.m 999 (p10) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1=0) poly = poly * rsq + PP_6 // else poly = poly * rsq + QQ_6 // (p9) fma.s1 FR_U_hi = FR_r_hi, FR_U_hi, f0 nop.i 999 ;; } { .mfi nop.m 999 (p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_4 nop.i 999 } { .mfi nop.m 999 (p10) fma.s1 FR_U_hi = FR_QQ_1, FR_U_hi, f1 nop.i 999 ;; } { .mfi nop.m 999 (p10) fma.d.s1 FR_QQ_5 = FR_QQ_5, FR_QQ_5, f0 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1!=0) U_hi = PP_1 * U_hi // if (i_1!=0) U_lo = r * r + U_lo // Load PP_3 or QQ_3 // (p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_4 nop.i 999 ;; } { .mfi nop.m 999 (p9) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0 nop.i 999 } { .mfi nop.m 999 (p10) fma.s1 FR_U_lo = FR_QQ_1,FR_U_lo, f0 nop.i 999 ;; } { .mfi nop.m 999 (p9) fma.s1 FR_U_hi = FR_PP_1, FR_U_hi, f0 nop.i 999 ;; } { .mfi nop.m 999 (p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_3 nop.i 999 ;; } { .mfi nop.m 999 // // Load PP_2, QQ_2 // (p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_3 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1==0) poly = FR_rsq * poly + PP_3 // else poly = FR_rsq * poly + QQ_3 // Load PP_1_lo // (p9) fma.s1 FR_U_lo = FR_PP_1, FR_U_lo, f0 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1 =0) poly = poly * rsq + pp_r4 // else poly = poly * rsq + qq_r4 // (p9) fma.s1 FR_U_hi = FR_r, f1, FR_U_hi nop.i 999 ;; } { .mfi nop.m 999 (p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_2 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1==0) U_lo = PP_1_hi * U_lo // else U_lo = QQ_1 * U_lo // (p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_2 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_0==0) Result = 1 // else Result = -1 // fma.s1 FR_V = FR_U_lo, f1, FR_corr nop.i 999 ;; } { .mfi nop.m 999 (p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1==0) poly = FR_rsq * poly + PP_2 // else poly = FR_rsq * poly + QQ_2 // (p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_1_lo nop.i 999 ;; } { .mfi nop.m 999 (p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0 nop.i 999 ;; } { .mfi nop.m 999 // // V = U_lo + corr // (p9) fma.s1 FR_poly = FR_r_cubed, FR_poly, f0 nop.i 999 ;; } { .mfi nop.m 999 // // if (i_1==0) poly = r_cube * poly // else poly = FR_rsq * poly // fma.s1 FR_V = FR_poly, f1, FR_V nop.i 999 ;; } { .mfi nop.m 999 //(p12) fms.s1 FR_Input_X = FR_Input_X, FR_U_hi, FR_V (p12) fms.s1 FR_Input_X = FR_prelim, FR_U_hi, FR_V nop.i 999 } { .mfb nop.m 999 // // V = V + poly // //(p11) fma.s1 FR_Input_X = FR_Input_X, FR_U_hi, FR_V (p11) fma.s1 FR_Input_X = FR_prelim, FR_U_hi, FR_V // // if (i_0==0) Result = Result * U_hi + V // else Result = Result * U_hi - V // br.ret.sptk b0 ;; } // // If cosine, FR_Input_X = 1 // If sine, FR_Input_X = +/-Zero (Input FR_Input_X) // Results are exact, no exceptions // SINCOS_ZERO: { .mmb cmp.eq.unc p6, p7 = 0x1, GR_Sin_or_Cos nop.m 999 nop.b 999 ;; } { .mfi nop.m 999 (p7) fmerge.s FR_Input_X = FR_Input_X, FR_Input_X nop.i 999 } { .mfb nop.m 999 (p6) fmerge.s FR_Input_X = f1, f1 br.ret.sptk b0 ;; } SINCOS_SPECIAL: // // Path for Arg = +/- QNaN, SNaN, Inf // Invalid can be raised. SNaNs // become QNaNs // { .mfb nop.m 999 fmpy.s1 FR_Input_X = FR_Input_X, f0 br.ret.sptk b0 ;; } GLOBAL_LIBM_END(__libm_cos_large) // ******************************************************************* // ******************************************************************* // ******************************************************************* // // Special Code to handle very large argument case. // Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63 // The interface is custom: // On input: // (Arg or x) is in f8 // On output: // r is in f8 // c is in f9 // N is in r8 // Be sure to allocate at least 2 GP registers as output registers for // __libm_pi_by_2_reduce. This routine uses r49-50. These are used as // scratch registers within the __libm_pi_by_2_reduce routine (for speed). // // We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127. We // use this to eliminate save/restore of key fp registers in this calling // function. // // ******************************************************************* // ******************************************************************* // ******************************************************************* LOCAL_LIBM_ENTRY(__libm_callout_2) SINCOS_ARG_TOO_LARGE: .prologue // Readjust Table ptr { .mfi adds GR_Table_Base1 = -16, GR_Table_Base1 nop.f 999 .save ar.pfs,GR_SAVE_PFS mov GR_SAVE_PFS=ar.pfs // Save ar.pfs };; { .mmi ldfs FR_Two_to_M3 = [GR_Table_Base1],4 mov GR_SAVE_GP=gp // Save gp .save b0, GR_SAVE_B0 mov GR_SAVE_B0=b0 // Save b0 };; .body // // Call argument reduction with x in f8 // Returns with N in r8, r in f8, c in f9 // Assumes f71-127 are preserved across the call // { .mib ldfs FR_Neg_Two_to_M3 = [GR_Table_Base1],0 nop.i 0 br.call.sptk b0=__libm_pi_by_2_reduce# };; { .mfi add GR_N_Inc = GR_Sin_or_Cos,r8 fcmp.lt.unc.s1 p6, p0 = FR_r, FR_Two_to_M3 mov b0 = GR_SAVE_B0 // Restore return address };; { .mfi mov gp = GR_SAVE_GP // Restore gp (p6) fcmp.gt.unc.s1 p6, p0 = FR_r, FR_Neg_Two_to_M3 mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs };; { .mbb nop.m 999 (p6) br.cond.spnt SINCOS_SMALL_R // Branch if |r| < 1/4 br.cond.sptk SINCOS_NORMAL_R ;; // Branch if 1/4 <= |r| < pi/4 } LOCAL_LIBM_END(__libm_callout_2) .type __libm_pi_by_2_reduce#,@function .global __libm_pi_by_2_reduce#