.file "scalbl.s" // Copyright (c) 2000 - 2003, Intel Corporation // All rights reserved. // // Contributed 2000 by the Intel Numerics Group, Intel Corporation // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm. // // History //============================================================== // 02/02/00 Initial version // 01/26/01 Scalb completely reworked and now standalone version // 05/20/02 Cleaned up namespace and sf0 syntax // 02/10/03 Reordered header: .section, .global, .proc, .align // 08/06/03 Improved performance // // API //============================================================== // long double = scalbl (long double x, long double n) // input floating point f8 and floating point f9 // output floating point f8 // // int_type = 0 if int is 32 bits // int_type = 1 if int is 64 bits // // Returns x* 2**n using an fma and detects overflow // and underflow. // // // Strategy: // Compute biased exponent of result exp_Result = N + exp_X // Break into ranges: // exp_Result > 0x13ffe -> Certain overflow // exp_Result = 0x13ffe -> Possible overflow // 0x0c001 <= exp_Result < 0x13ffe -> No over/underflow (main path) // 0x0c001 - 63 <= exp_Result < 0x0c001 -> Possible underflow // exp_Result < 0x0c001 - 63 -> Certain underflow FR_Big = f6 FR_NBig = f7 FR_Floating_X = f8 FR_Result = f8 FR_Floating_N = f9 FR_Result2 = f9 FR_Result3 = f10 FR_Norm_X = f11 FR_Two_N = f12 FR_N_float_int = f13 FR_Norm_N = f14 GR_neg_ov_limit= r14 GR_big_exp = r14 GR_N_Biased = r15 GR_Big = r16 GR_exp_Result = r18 GR_pos_ov_limit= r19 GR_exp_sure_ou = r19 GR_Bias = r20 GR_N_as_int = r21 GR_signexp_X = r22 GR_exp_X = r23 GR_exp_mask = r24 GR_max_exp = r25 GR_min_exp = r26 GR_min_den_exp = r27 GR_Scratch = r28 GR_signexp_N = r29 GR_exp_N = r30 GR_SAVE_B0 = r32 GR_SAVE_GP = r33 GR_SAVE_PFS = r34 GR_Parameter_X = r35 GR_Parameter_Y = r36 GR_Parameter_RESULT = r37 GR_Tag = r38 .section .text GLOBAL_IEEE754_ENTRY(scalbl) // // Is x NAN, INF, ZERO, +-? // Build the exponent Bias // { .mfi getf.exp GR_signexp_N = FR_Floating_N // Get signexp of n fclass.m p6,p0 = FR_Floating_X, 0xe7 // @snan | @qnan | @inf | @zero mov GR_Bias = 0x0ffff } { .mfi mov GR_Big = 35000 // If N this big then certain overflow fcvt.fx.trunc.s1 FR_N_float_int = FR_Floating_N // Get N in significand nop.i 0 } ;; { .mfi getf.exp GR_signexp_X = FR_Floating_X // Get signexp of x fclass.m p7,p0 = FR_Floating_N, 0x0b // Test for n=unorm nop.i 0 } // // Normalize n // { .mfi mov GR_exp_mask = 0x1ffff // Exponent mask fnorm.s1 FR_Norm_N = FR_Floating_N nop.i 0 } ;; // // Is n NAN, INF, ZERO, +-? // { .mfi mov GR_big_exp = 0x1003e // Exponent at which n is integer fclass.m p9,p0 = FR_Floating_N, 0xe7 // @snan | @qnan | @inf | @zero mov GR_max_exp = 0x13ffe // Exponent of maximum long double } // // Normalize x // { .mfb nop.m 0 fnorm.s1 FR_Norm_X = FR_Floating_X (p7) br.cond.spnt SCALBL_N_UNORM // Branch if n=unorm } ;; SCALBL_COMMON1: // Main path continues. Also return here from u=unorm path. // Handle special cases if x = Nan, Inf, Zero { .mfb nop.m 0 fcmp.lt.s1 p7,p0 = FR_Floating_N, f0 // Test N negative (p6) br.cond.spnt SCALBL_NAN_INF_ZERO } ;; // Handle special cases if n = Nan, Inf, Zero { .mfi getf.sig GR_N_as_int = FR_N_float_int // Get n from significand fclass.m p8,p0 = FR_Floating_X, 0x0b // Test for x=unorm mov GR_exp_sure_ou = 0x1000e // Exp_N where x*2^N sure over/under } { .mfb mov GR_min_exp = 0x0c001 // Exponent of minimum long double fcvt.xf FR_N_float_int = FR_N_float_int // Convert N to FP integer (p9) br.cond.spnt SCALBL_NAN_INF_ZERO } ;; { .mmi and GR_exp_N = GR_exp_mask, GR_signexp_N // Get exponent of N (p7) sub GR_Big = r0, GR_Big // Limit for N nop.i 0 } ;; { .mib cmp.lt p9,p0 = GR_exp_N, GR_big_exp // N possible non-integer? cmp.ge p6,p0 = GR_exp_N, GR_exp_sure_ou // N certain over/under? (p8) br.cond.spnt SCALBL_X_UNORM // Branch if x=unorm } ;; SCALBL_COMMON2: // Main path continues. Also return here from x=unorm path. // Create biased exponent for 2**N { .mmi (p6) mov GR_N_as_int = GR_Big // Limit N ;; add GR_N_Biased = GR_Bias,GR_N_as_int nop.i 0 } ;; { .mfi setf.exp FR_Two_N = GR_N_Biased // Form 2**N (p9) fcmp.neq.unc.s1 p9,p0 = FR_Norm_N, FR_N_float_int // Test if N an integer and GR_exp_X = GR_exp_mask, GR_signexp_X // Get exponent of X } ;; // // Compute biased result exponent // Branch if N is not an integer // { .mib add GR_exp_Result = GR_exp_X, GR_N_as_int mov GR_min_den_exp = 0x0c001 - 63 // Exp of min denorm long dble (p9) br.cond.spnt SCALBL_N_NOT_INT } ;; // // Raise Denormal operand flag with compare // Do final operation // { .mfi cmp.lt p7,p6 = GR_exp_Result, GR_max_exp // Test no overflow fcmp.ge.s0 p0,p11 = FR_Floating_X,FR_Floating_N // Dummy to set denorm cmp.lt p9,p0 = GR_exp_Result, GR_min_den_exp // Test sure underflow } { .mfb nop.m 0 fma.s0 FR_Result = FR_Two_N,FR_Norm_X,f0 (p9) br.cond.spnt SCALBL_UNDERFLOW // Branch if certain underflow } ;; { .mib (p6) cmp.gt.unc p6,p8 = GR_exp_Result, GR_max_exp // Test sure overflow (p7) cmp.ge.unc p7,p9 = GR_exp_Result, GR_min_exp // Test no over/underflow (p7) br.ret.sptk b0 // Return from main path } ;; { .bbb (p6) br.cond.spnt SCALBL_OVERFLOW // Branch if certain overflow (p8) br.cond.spnt SCALBL_POSSIBLE_OVERFLOW // Branch if possible overflow (p9) br.cond.spnt SCALBL_POSSIBLE_UNDERFLOW // Branch if possible underflow } ;; // Here if possible underflow. // Resulting exponent: 0x0c001-63 <= exp_Result < 0x0c001 SCALBL_POSSIBLE_UNDERFLOW: // // Here if possible overflow. // Resulting exponent: 0x13ffe = exp_Result SCALBL_POSSIBLE_OVERFLOW: // Set up necessary status fields // // S0 user supplied status // S2 user supplied status + WRE + TD (Overflows) // S3 user supplied status + FZ + TD (Underflows) // { .mfi mov GR_pos_ov_limit = 0x13fff // Exponent for positive overflow fsetc.s3 0x7F,0x41 nop.i 0 } { .mfi mov GR_neg_ov_limit = 0x33fff // Exponent for negative overflow fsetc.s2 0x7F,0x42 nop.i 0 } ;; // // Do final operation with s2 and s3 // { .mfi setf.exp FR_NBig = GR_neg_ov_limit fma.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0 nop.i 0 } { .mfi setf.exp FR_Big = GR_pos_ov_limit fma.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0 nop.i 0 } ;; // Check for overflow or underflow. // Restore s3 // Restore s2 // { .mfi nop.m 0 fsetc.s3 0x7F,0x40 nop.i 0 } { .mfi nop.m 0 fsetc.s2 0x7F,0x40 nop.i 0 } ;; // // Is the result zero? // { .mfi nop.m 0 fclass.m p6, p0 = FR_Result3, 0x007 nop.i 0 } { .mfi nop.m 0 fcmp.ge.s1 p7, p8 = FR_Result2 , FR_Big nop.i 0 } ;; // // Detect masked underflow - Tiny + Inexact Only // { .mfi nop.m 0 (p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2 nop.i 0 } ;; // // Is result bigger the allowed range? // Branch out for underflow // { .mfb nop.m 0 (p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig (p6) br.cond.spnt SCALBL_UNDERFLOW } ;; // // Branch out for overflow // { .bbb (p7) br.cond.spnt SCALBL_OVERFLOW (p9) br.cond.spnt SCALBL_OVERFLOW br.ret.sptk b0 // Return from main path. } ;; // Here if result overflows SCALBL_OVERFLOW: { .mib alloc r32=ar.pfs,3,0,4,0 addl GR_Tag = 51, r0 // Set error tag for overflow br.cond.sptk __libm_error_region // Call error support for overflow } ;; // Here if result underflows SCALBL_UNDERFLOW: { .mib alloc r32=ar.pfs,3,0,4,0 addl GR_Tag = 52, r0 // Set error tag for underflow br.cond.sptk __libm_error_region // Call error support for underflow } ;; SCALBL_NAN_INF_ZERO: // // Before entry, N has been converted to a fp integer in significand of // FR_N_float_int // // Convert N_float_int to floating point value // { .mfi getf.sig GR_N_as_int = FR_N_float_int fclass.m p6,p0 = FR_Floating_N, 0xc3 //@snan | @qnan nop.i 0 } { .mfi addl GR_Scratch = 1,r0 fcvt.xf FR_N_float_int = FR_N_float_int nop.i 0 } ;; { .mfi nop.m 0 fclass.m p7,p0 = FR_Floating_X, 0xc3 //@snan | @qnan shl GR_Scratch = GR_Scratch,63 } ;; { .mfi nop.m 0 fclass.m p8,p0 = FR_Floating_N, 0x21 // @inf nop.i 0 } { .mfi nop.m 0 fclass.m p9,p0 = FR_Floating_N, 0x22 // @-inf nop.i 0 } ;; // // Either X or N is a Nan, return result and possible raise invalid. // { .mfb nop.m 0 (p6) fma.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0 (p6) br.ret.spnt b0 } ;; { .mfb nop.m 0 (p7) fma.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0 (p7) br.ret.spnt b0 } ;; // // If N + Inf do something special // For N = -Inf, create Int // { .mfb nop.m 0 (p8) fma.s0 FR_Result = FR_Floating_X, FR_Floating_N,f0 (p8) br.ret.spnt b0 } { .mfi nop.m 0 (p9) fnma.s0 FR_Floating_N = FR_Floating_N, f1, f0 nop.i 0 } ;; // // If N==-Inf,return x/(-N) // { .mfb cmp.ne p7,p0 = GR_N_as_int,GR_Scratch (p9) frcpa.s0 FR_Result,p0 = FR_Floating_X,FR_Floating_N (p9) br.ret.spnt b0 } ;; // // Is N an integer. // { .mfi nop.m 0 (p7) fcmp.neq.unc.s1 p7,p0 = FR_Norm_N, FR_N_float_int nop.i 0 } ;; // // If N not an int, return NaN and raise invalid. // { .mfb nop.m 0 (p7) frcpa.s0 FR_Result,p0 = f0,f0 (p7) br.ret.spnt b0 } ;; // // Always return x in other path. // { .mfb nop.m 0 fma.s0 FR_Result = FR_Floating_X,f1,f0 br.ret.sptk b0 } ;; // Here if n not int // Return NaN and raise invalid. SCALBL_N_NOT_INT: { .mfb nop.m 0 frcpa.s0 FR_Result,p0 = f0,f0 br.ret.sptk b0 } ;; // Here if n=unorm SCALBL_N_UNORM: { .mfb getf.exp GR_signexp_N = FR_Norm_N // Get signexp of normalized n fcvt.fx.trunc.s1 FR_N_float_int = FR_Norm_N // Get N in significand br.cond.sptk SCALBL_COMMON1 // Return to main path } ;; // Here if x=unorm SCALBL_X_UNORM: { .mib getf.exp GR_signexp_X = FR_Norm_X // Get signexp of normalized x nop.i 0 br.cond.sptk SCALBL_COMMON2 // Return to main path } ;; GLOBAL_IEEE754_END(scalbl) LOCAL_LIBM_ENTRY(__libm_error_region) // // Get stack address of N // .prologue { .mfi add GR_Parameter_Y=-32,sp nop.f 0 .save ar.pfs,GR_SAVE_PFS mov GR_SAVE_PFS=ar.pfs } // // Adjust sp // { .mfi .fframe 64 add sp=-64,sp nop.f 0 mov GR_SAVE_GP=gp };; // // Store N on stack in correct position // Locate the address of x on stack // { .mmi stfe [GR_Parameter_Y] = FR_Norm_N,16 add GR_Parameter_X = 16,sp .save b0, GR_SAVE_B0 mov GR_SAVE_B0=b0 };; // // Store x on the stack. // Get address for result on stack. // .body { .mib stfe [GR_Parameter_X] = FR_Norm_X add GR_Parameter_RESULT = 0,GR_Parameter_Y nop.b 0 } { .mib stfe [GR_Parameter_Y] = FR_Result add GR_Parameter_Y = -16,GR_Parameter_Y br.call.sptk b0=__libm_error_support# };; // // Get location of result on stack // { .mmi add GR_Parameter_RESULT = 48,sp nop.m 0 nop.i 0 };; // // Get the new result // { .mmi ldfe FR_Result = [GR_Parameter_RESULT] .restore sp add sp = 64,sp mov b0 = GR_SAVE_B0 };; // // Restore gp, ar.pfs and return // { .mib mov gp = GR_SAVE_GP mov ar.pfs = GR_SAVE_PFS br.ret.sptk b0 };; LOCAL_LIBM_END(__libm_error_region) .type __libm_error_support#,@function .global __libm_error_support#