.file "scalbl.s" // Copyright (c) 2000 - 2003, Intel Corporation // All rights reserved. // // Contributed 2000 by the Intel Numerics Group, Intel Corporation // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm. // // History //============================================================== // 02/02/00 Initial version // 01/26/01 Scalb completely reworked and now standalone version // 05/20/02 Cleaned up namespace and sf0 syntax // 02/10/03 Reordered header: .section, .global, .proc, .align // // API //============================================================== // double-extended = scalbl (double-extended x, double-extended n) // input floating point f8 and floating point f9 // output floating point f8 // // Returns x* 2**n using an fma and detects overflow // and underflow. // // FR_Floating_X = f8 FR_Result = f8 FR_Floating_N = f9 FR_Result2 = f9 FR_Norm_N = f10 FR_Result3 = f11 FR_Norm_X = f12 FR_N_float_int = f13 FR_Two_N = f14 FR_Two_to_Big = f15 FR_Big = f6 FR_NBig = f7 GR_N_Biased = r15 GR_Big = r16 GR_NBig = r17 GR_Scratch = r18 GR_Scratch1 = r19 GR_Bias = r20 GR_N_as_int = r21 GR_SAVE_B0 = r32 GR_SAVE_GP = r33 GR_SAVE_PFS = r34 GR_Parameter_X = r35 GR_Parameter_Y = r36 GR_Parameter_RESULT = r37 GR_Tag = r38 .section .text GLOBAL_IEEE754_ENTRY(scalbl) // // Is x NAN, INF, ZERO, +-? // { .mfi alloc r32=ar.pfs,0,3,4,0 fclass.m.unc p7,p0 = FR_Floating_X, 0xe7 //@snan | @qnan | @inf | @zero addl GR_Scratch = 0x019C3F,r0 } // // Is y a NAN, INF, ZERO, +-? // { .mfi nop.m 999 fclass.m.unc p6,p0 = FR_Floating_N, 0xe7 //@snan | @qnan | @inf | @zero addl GR_Scratch1 = 0x063BF,r0 } ;; // // Convert N to a fp integer // Normalize x // { .mfi nop.m 0 fnorm.s1 FR_Norm_N = FR_Floating_N nop.i 999 } { .mfi nop.m 999 fnorm.s1 FR_Norm_X = FR_Floating_X nop.i 999 };; // // Create 2*big // Create 2**-big // Normalize x // Branch on special values. // { .mib setf.exp FR_Big = GR_Scratch nop.i 0 (p6) br.cond.spnt SCALBL_NAN_INF_ZERO } { .mib setf.exp FR_NBig = GR_Scratch1 nop.i 0 (p7) br.cond.spnt SCALBL_NAN_INF_ZERO };; // // Convert N to a fp integer // Create -35000 // { .mfi addl GR_Scratch = 1,r0 fcvt.fx.trunc.s1 FR_N_float_int = FR_Norm_N addl GR_NBig = -35000,r0 } ;; // // Put N if a GP register // Convert N_float_int to floating point value // Create 35000 // Build the exponent Bias // { .mii getf.sig GR_N_as_int = FR_N_float_int shl GR_Scratch = GR_Scratch,63 addl GR_Big = 35000,r0 } { .mfi addl GR_Bias = 0x0FFFF,r0 fcvt.xf FR_N_float_int = FR_N_float_int nop.i 0 };; // // Catch those fp values that are beyond 2**64-1 // Is N > 35000 // Is N < -35000 // { .mfi cmp.ne.unc p9,p10 = GR_N_as_int,GR_Scratch nop.f 0 nop.i 0 } { .mmi cmp.ge.unc p6, p0 = GR_N_as_int, GR_Big cmp.le.unc p8, p0 = GR_N_as_int, GR_NBig nop.i 0 };; // // Is N really an int, only for those non-int indefinites? // Create exp bias. // { .mfi add GR_N_Biased = GR_Bias,GR_N_as_int (p9) fcmp.neq.unc.s1 p7,p0 = FR_Norm_N, FR_N_float_int nop.i 0 };; // // Branch and return if N is not an int. // Main path, create 2**N // { .mfi setf.exp FR_Two_N = GR_N_Biased nop.i 999 } { .mfb nop.m 0 (p7) frcpa.s0 f8,p11 = f0,f0 (p7) br.ret.spnt b0 };; // // Set denormal on denormal input x and denormal input N // { .mfi nop.m 999 (p10)fcmp.ge.s1 p6,p8 = FR_Norm_N,f0 nop.i 0 };; { .mfi nop.m 999 fcmp.ge.s0 p0,p11 = FR_Floating_X,f0 nop.i 999 } { .mfi nop.m 999 fcmp.ge.s0 p12,p13 = FR_Floating_N,f0 nop.i 0 };; // // Adjust 2**N if N was very small or very large // { .mfi nop.m 0 (p6) fma.s1 FR_Two_N = FR_Big,f1,f0 nop.i 0 } { .mlx nop.m 999 movl GR_Scratch = 0x0000000000033FFF };; { .mfi nop.m 0 (p8) fma.s1 FR_Two_N = FR_NBig,f1,f0 nop.i 0 } { .mlx nop.m 999 movl GR_Scratch1= 0x0000000000013FFF };; // Set up necessary status fields // // S0 user supplied status // S2 user supplied status + WRE + TD (Overflows) // S3 user supplied status + FZ + TD (Underflows) // { .mfi nop.m 999 fsetc.s3 0x7F,0x41 nop.i 999 } { .mfi nop.m 999 fsetc.s2 0x7F,0x42 nop.i 999 };; // // Do final operation // { .mfi setf.exp FR_NBig = GR_Scratch fma.s0 FR_Result = FR_Two_N,FR_Norm_X,f0 nop.i 999 } { .mfi nop.m 999 fma.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0 nop.i 999 };; { .mfi setf.exp FR_Big = GR_Scratch1 fma.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0 nop.i 999 };; // Check for overflow or underflow. // // S0 user supplied status // S2 user supplied status + WRE + TD (Overflow) // S3 user supplied status + FZ + TD (Underflow) // // // Restore s3 // Restore s2 // { .mfi nop.m 0 fsetc.s3 0x7F,0x40 nop.i 999 } { .mfi nop.m 0 fsetc.s2 0x7F,0x40 nop.i 999 };; // // Is the result zero? // { .mfi nop.m 999 fclass.m.unc p6, p0 = FR_Result3, 0x007 nop.i 999 } { .mfi addl GR_Tag = 51, r0 fcmp.ge.unc.s1 p7, p8 = FR_Result2 , FR_Big nop.i 0 };; // // Detect masked underflow - Tiny + Inexact Only // { .mfi nop.m 999 (p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2 nop.i 999 };; // // Is result bigger the allowed range? // Branch out for underflow // { .mfb (p6) addl GR_Tag = 52, r0 (p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig (p6) br.cond.spnt SCALBL_UNDERFLOW };; // // Branch out for overflow // { .mbb nop.m 0 (p7) br.cond.spnt SCALBL_OVERFLOW (p9) br.cond.spnt SCALBL_OVERFLOW };; // // Return from main path. // { .mfb nop.m 999 nop.f 0 br.ret.sptk b0;; } SCALBL_NAN_INF_ZERO: // // Convert N to a fp integer // { .mfi addl GR_Scratch = 1,r0 fcvt.fx.trunc.s1 FR_N_float_int = FR_Norm_N nop.i 999 } { .mfi nop.m 0 fclass.m.unc p6,p0 = FR_Floating_N, 0xc3 //@snan | @qnan nop.i 0 };; { .mfi nop.m 0 fclass.m.unc p7,p0 = FR_Floating_X, 0xc3 //@snan | @qnan shl GR_Scratch = GR_Scratch,63 };; { .mfi nop.m 0 fclass.m.unc p8,p0 = FR_Floating_N, 0x21 // @inf nop.i 0 } { .mfi nop.m 0 fclass.m.unc p9,p0 = FR_Floating_N, 0x22 // @-inf nop.i 0 };; // // Either X or N is a Nan, return result and possible raise invalid. // { .mfb nop.m 0 (p6) fma.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0 (p6) br.ret.spnt b0 };; { .mfb getf.sig GR_N_as_int = FR_N_float_int (p7) fma.s0 FR_Result = FR_Floating_N,FR_Floating_X,f0 (p7) br.ret.spnt b0 };; // // If N + Inf do something special // For N = -Inf, create Int // { .mfb nop.m 0 (p8) fma.s0 FR_Result = FR_Floating_X, FR_Floating_N,f0 (p8) br.ret.spnt b0 } { .mfi nop.m 0 (p9) fnma.s0 FR_Floating_N = FR_Floating_N, f1, f0 nop.i 0 };; // // If N==-Inf,return x/(-N) // { .mfb nop.m 0 (p9) frcpa.s0 FR_Result,p6 = FR_Floating_X,FR_Floating_N (p9) br.ret.spnt b0 };; // // Convert N_float_int to floating point value // { .mfi cmp.ne.unc p9,p0 = GR_N_as_int,GR_Scratch fcvt.xf FR_N_float_int = FR_N_float_int nop.i 0 };; // // Is N an integer. // { .mfi nop.m 0 (p9) fcmp.neq.unc.s1 p7,p0 = FR_Norm_N, FR_N_float_int nop.i 0 };; // // If N not an int, return NaN and raise invalid. // { .mfb nop.m 0 (p7) frcpa.s0 FR_Result,p6 = f0,f0 (p7) br.ret.spnt b0 };; // // Always return x in other path. // { .mfb nop.m 0 fma.s0 FR_Result = FR_Floating_X,f1,f0 br.ret.sptk b0 };; GLOBAL_IEEE754_END(scalbl) __libm_error_region: SCALBL_OVERFLOW: SCALBL_UNDERFLOW: // // Get stack address of N // .prologue { .mfi add GR_Parameter_Y=-32,sp nop.f 0 .save ar.pfs,GR_SAVE_PFS mov GR_SAVE_PFS=ar.pfs } // // Adjust sp // { .mfi .fframe 64 add sp=-64,sp nop.f 0 mov GR_SAVE_GP=gp };; // // Store N on stack in correct position // Locate the address of x on stack // { .mmi stfe [GR_Parameter_Y] = FR_Norm_N,16 add GR_Parameter_X = 16,sp .save b0, GR_SAVE_B0 mov GR_SAVE_B0=b0 };; // // Store x on the stack. // Get address for result on stack. // .body { .mib stfe [GR_Parameter_X] = FR_Norm_X add GR_Parameter_RESULT = 0,GR_Parameter_Y nop.b 0 } { .mib stfe [GR_Parameter_Y] = FR_Result add GR_Parameter_Y = -16,GR_Parameter_Y br.call.sptk b0=__libm_error_support# };; // // Get location of result on stack // { .mmi nop.m 0 nop.m 0 add GR_Parameter_RESULT = 48,sp };; // // Get the new result // { .mmi ldfe FR_Result = [GR_Parameter_RESULT] .restore sp add sp = 64,sp mov b0 = GR_SAVE_B0 };; // // Restore gp, ar.pfs and return // { .mib mov gp = GR_SAVE_GP mov ar.pfs = GR_SAVE_PFS br.ret.sptk b0 };; LOCAL_LIBM_END(__libm_error_region) .type __libm_error_support#,@function .global __libm_error_support#