.file "remainderl.s" // Copyright (c) 2000 - 2003, Intel Corporation // All rights reserved. // // Contributed 2000 by the Intel Numerics Group, Intel Corporation // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm. // // History //==================================================================== // 02/02/00 Initial version // 03/02/00 New algorithm // 04/04/00 Unwind support added // 07/21/00 Fixed quotient=2^{24*m+23}*1.q1...q23 1 bug // 08/15/00 Bundle added after call to __libm_error_support to properly // set [the previously overwritten] GR_Parameter_RESULT. // 11/29/00 Set FR_Y to f9 // 05/20/02 Cleaned up namespace and sf0 syntax // 02/10/03 Reordered header: .section, .global, .proc, .align // // API //==================================================================== // long double remainderl(long double,long double); // // Overview of operation //==================================================================== // remainder(a,b)=a-i*b, // where i is an integer such that, if b!=0 and a is finite, // |a/b-i|<=1/2. If |a/b-i|=1/2, i is even. // // Algorithm //==================================================================== // a). eliminate special cases // b). if |a/b|<0.25 (first quotient estimate), return a // c). use single precision divide algorithm to get quotient q // rounded to 24 bits of precision // d). calculate partial remainders (using both q and q-ulp); // select one and RZ(a/b) based on the sign of |a|-|b|*q // e). if the exponent difference (exponent(a)-exponent(b)) // is less than 24 (quotient estimate<2^{24}-2), use RZ(a/b) // and sticky bits to round to integer; exit loop and // calculate final remainder // f). if exponent(a)-exponent(b)>=24, select new value of a as // the partial remainder calculated using RZ(a/b); // repeat from c). // // Special cases //==================================================================== // a=+/- Inf, or b=+/-0: return NaN, call libm_error_support // a=NaN or b=NaN: return NaN // // Registers used //==================================================================== // Predicate registers: p6-p14 // General registers: r2,r3,r28,r29,r32 (ar.pfs), r33-r39 // Floating point registers: f6-f15,f32 // GR_SAVE_B0 = r33 GR_SAVE_PFS = r34 GR_SAVE_GP = r35 GR_SAVE_SP = r36 GR_Parameter_X = r37 GR_Parameter_Y = r38 GR_Parameter_RESULT = r39 GR_Parameter_TAG = r40 FR_X = f10 FR_Y = f9 FR_RESULT = f8 .section .text GLOBAL_IEEE754_ENTRY(remainderl) // inputs in f8, f9 // result in f8 { .mfi alloc r32=ar.pfs,1,4,4,0 // f13=|a| fmerge.s f13=f0,f8 nop.i 0 } {.mfi getf.sig r29=f9 // f14=|b| fmerge.s f14=f0,f9 nop.i 0;; } {.mlx mov r28=0x2ffdd // r2=2^{23} movl r3=0x4b000000;; } {.mmi setf.exp f32=r28 nop.m 0 // y pseudo-zero ? cmp.eq p11,p10=r29,r0;; } // Y +-NAN, +-inf, +-0? p11 { .mfi nop.m 999 (p10) fclass.m p11,p10 = f9, 0xe7 nop.i 999 } // qnan snan inf norm unorm 0 -+ // 1 1 1 0 0 0 11 // e 3 // X +-NAN, +-inf, ? p9 { .mfi nop.m 999 fclass.m.unc p9,p8 = f8, 0xe3 nop.i 999;; } {.mfi nop.m 0 mov f12=f0 nop.i 0 } { .mfi // set p7=1 cmp.eq.unc p7,p0=r0,r0 // Step (1) // y0 = 1 / b in f10 frcpa.s1 f10,p6=f13,f14 nop.i 0;; } // Y +-NAN, +-inf, +-0? p11 { .mfi nop.m 999 // pseudo-NaN ? (p10) fclass.nm p11,p0 = f9, 0xff nop.i 999 } // qnan snan inf norm unorm 0 -+ // 1 1 1 0 0 0 11 // e 3 // X +-NAN, +-inf, ? p9 { .mfi nop.m 999 (p8) fclass.nm p9,p0 = f8, 0xff nop.i 999;; } {.bbb (p9) br.cond.spnt FREM_X_NAN_INF (p11) br.cond.spnt FREM_Y_NAN_INF_ZERO nop.b 0 } {.mfi nop.m 0 // set D flag if a (f8) is denormal fnma.s0 f6=f8,f1,f8 nop.i 0;; } remloop24: { .mfi nop.m 0 // Step (2) // q0 = a * y0 in f15 (p6) fma.s1 f12=f13,f10,f0 nop.i 0 } { .mfi nop.m 0 // Step (3) // e0 = 1 - b * y0 in f7 (p6) fnma.s1 f7=f14,f10,f1 nop.i 0;; } {.mlx nop.m 0 // r2=1.25*2^{-24} movl r2=0x33a00000;; } {.mfi nop.m 0 // q1=q0*(1+e0) (p6) fma.s1 f15=f12,f7,f12 nop.i 0 } { .mfi nop.m 0 // Step (4) // e1 = e0 * e0 + E in f7 (p6) fma.s1 f7=f7,f7,f32 nop.i 0;; } {.mii (p7) getf.exp r29=f12 (p7) mov r28=0xfffd nop.i 0;; } { .mfi // f12=2^{23} setf.s f12=r3 // Step (5) // q2 = q1 + e1 * q1 in f11 (p6) fma.s.s1 f11=f7,f15,f15 nop.i 0 } { .mfi nop.m 0 // Step (6) // q2 = q1 + e1 * q1 in f6 (p6) fma.s1 f6=f7,f15,f15 nop.i 0;; } {.mmi // f15=1.25*2^{-24} setf.s f15=r2 // q<1/4 ? (i.e. expon< -2) (p7) cmp.gt p7,p0=r28,r29 nop.i 0;; } {.mfb // r29= -32+bias mov r29=0xffdf // if |a/b|<1/4, set D flag before returning (p7) fma.s0 f9=f9,f0,f8 nop.b 0;; } {.mfb nop.m 0 // can be combined with bundle above if sign of 0 or // FTZ enabled are not important (p7) fmerge.s f8=f8,f9 // return if |a|<4*|b| (estimated quotient < 1/4) (p7) br.ret.spnt b0;; } {.mfi // f7=2^{-32} setf.exp f7=r29 // set f8 to current a value | sign fmerge.s f8=f8,f13 nop.i 0;; } {.mfi getf.exp r28=f6 // last step ? (q<2^{23}) fcmp.lt.unc.s1 p0,p12=f6,f12 nop.i 0;; } {.mfi nop.m 0 // r=a-b*q fnma.s1 f6=f14,f11,f13 nop.i 0 } {.mfi // r2=23+bias mov r2=0xffff+23 // q'=q-q*(1.25*2^{-24}) (q'=q-ulp) fnma.s.s1 f15=f11,f15,f11 nop.i 0;; } {.mmi nop.m 0 cmp.eq p11,p14=r2,r28 nop.i 0;; } .pred.rel "mutex",p11,p14 {.mfi nop.m 0 // if exp_q=2^23, then r=a-b*2^{23} (p11) fnma.s1 f13=f12,f14,f13 nop.i 0 } {.mfi nop.m 0 // r2=a-b*q' (p14) fnma.s1 f13=f14,f15,f13 nop.i 0;; } {.mfi nop.m 0 // r>0 iff q=RZ(a/b) and inexact fcmp.gt.unc.s1 p8,p0=f6,f0 nop.i 0 } {.mfi nop.m 0 // r<0 iff q'=RZ(a/b) and inexact (p14) fcmp.lt.unc.s1 p9,p10=f6,f0 nop.i 0;; } .pred.rel "mutex",p8,p9 {.mfi nop.m 0 // (p8) Q=q+(last iteration ? sticky bits:0) // i.e. Q=q+q*x (x=2^{-32} or 0) (p8) fma.s1 f11=f11,f7,f11 nop.i 0 } {.mfi nop.m 0 // (p9) Q=q'+(last iteration ? sticky bits:0) // i.e. Q=q'+q'*x (x=2^{-32} or 0) (p9) fma.s1 f11=f15,f7,f15 nop.i 0;; } {.mfb nop.m 0 // (p9) set r=r2 (new a, if not last iteration) // (p10) new a =r (p10) mov f13=f6 (p12) br.cond.sptk remloop24;; } // last iteration {.mfi nop.m 0 // set f9=|b|*sgn(a) fmerge.s f9=f8,f9 nop.i 0 } {.mfi nop.m 0 // round to integer fcvt.fx.s1 f11=f11 nop.i 0;; } {.mfi nop.m 0 // save sign of a fmerge.s f7=f8,f8 nop.i 0 } {.mfi nop.m 0 // normalize fcvt.xf f11=f11 nop.i 0;; } {.mfi nop.m 0 // This can be removed if sign of 0 is not important // get remainder using sf1 fnma.s1 f12=f9,f11,f8 nop.i 0 } {.mfi nop.m 0 // get remainder fnma.s0 f8=f9,f11,f8 nop.i 0;; } {.mfi nop.m 0 // f12=0? // This can be removed if sign of 0 is not important fcmp.eq.unc.s1 p8,p0=f12,f0 nop.i 0;; } {.mfb nop.m 0 // if f8=0, set sign correctly // This can be removed if sign of 0 is not important (p8) fmerge.s f8=f7,f8 // return br.ret.sptk b0;; } FREM_X_NAN_INF: // Y zero ? {.mfi nop.m 0 fma.s1 f10=f9,f1,f0 nop.i 0;; } {.mfi nop.m 0 fcmp.eq.unc.s1 p11,p0=f10,f0 nop.i 0;; } {.mib nop.m 0 nop.i 0 // if Y zero (p11) br.cond.spnt FREM_Y_ZERO;; } // X infinity? Return QNAN indefinite { .mfi nop.m 999 fclass.m.unc p8,p0 = f8, 0x23 nop.i 999 } // X infinity? Return QNAN indefinite { .mfi nop.m 999 fclass.m.unc p11,p0 = f8, 0x23 nop.i 999;; } // Y NaN ? {.mfi nop.m 999 (p8) fclass.m.unc p0,p8=f9,0xc3 nop.i 0;; } {.mfi nop.m 999 // also set Denormal flag if necessary (p8) fnma.s0 f9=f9,f1,f9 nop.i 0 } { .mfi nop.m 999 (p8) frcpa.s0 f8,p7 = f8,f8 nop.i 999 ;; } {.mfi nop.m 999 (p11) mov f10=f8 nop.i 0 } { .mfi nop.m 999 (p8) fma.s0 f8=f8,f1,f0 nop.i 0 ;; } { .mfb nop.m 999 frcpa.s0 f8,p7=f8,f9 (p11) br.cond.spnt EXP_ERROR_RETURN;; } { .mib nop.m 0 nop.i 0 br.ret.spnt b0 ;; } FREM_Y_NAN_INF_ZERO: // Y INF { .mfi nop.m 999 fclass.m.unc p7,p0 = f9, 0x23 nop.i 999 ;; } { .mfb nop.m 999 (p7) fma.s0 f8=f8,f1,f0 (p7) br.ret.spnt b0 ;; } // Y NAN? { .mfi nop.m 999 fclass.m.unc p9,p10 = f9, 0xc3 nop.i 999 ;; } { .mfi nop.m 999 (p10) fclass.nm p9,p0 = f9, 0xff nop.i 999 ;; } { .mfb nop.m 999 (p9) fma.s0 f8=f9,f1,f0 (p9) br.ret.spnt b0 ;; } FREM_Y_ZERO: // Y zero? Must be zero at this point // because it is the only choice left. // Return QNAN indefinite // X NAN? { .mfi nop.m 999 fclass.m.unc p9,p10 = f8, 0xc3 nop.i 999 ;; } { .mfi nop.m 999 (p10) fclass.nm p9,p10 = f8, 0xff nop.i 999 ;; } {.mfi nop.m 999 (p9) frcpa.s0 f11,p7=f8,f0 nop.i 0;; } { .mfi nop.m 999 (p10) frcpa.s0 f11,p7 = f0,f0 nop.i 999;; } { .mfi nop.m 999 fmerge.s f10 = f8, f8 nop.i 999 } { .mfi nop.m 999 fma.s0 f8=f11,f1,f0 nop.i 999;; } EXP_ERROR_RETURN: { .mib mov GR_Parameter_TAG = 123 nop.i 999 br.sptk __libm_error_region;; } GLOBAL_IEEE754_END(remainderl) weak_alias (__remainderl, dreml) LOCAL_LIBM_ENTRY(__libm_error_region) .prologue { .mfi add GR_Parameter_Y=-32,sp // Parameter 2 value nop.f 0 .save ar.pfs,GR_SAVE_PFS mov GR_SAVE_PFS=ar.pfs // Save ar.pfs } { .mfi .fframe 64 add sp=-64,sp // Create new stack nop.f 0 mov GR_SAVE_GP=gp // Save gp };; { .mmi stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack add GR_Parameter_X = 16,sp // Parameter 1 address .save b0, GR_SAVE_B0 mov GR_SAVE_B0=b0 // Save b0 };; .body { .mib stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack add GR_Parameter_RESULT = 0,GR_Parameter_Y nop.b 0 // Parameter 3 address } { .mib stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack add GR_Parameter_Y = -16,GR_Parameter_Y br.call.sptk b0=__libm_error_support# // Call error handling function };; { .mmi nop.m 0 nop.m 0 add GR_Parameter_RESULT = 48,sp };; { .mmi ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack .restore sp add sp = 64,sp // Restore stack pointer mov b0 = GR_SAVE_B0 // Restore return address };; { .mib mov gp = GR_SAVE_GP // Restore gp mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs br.ret.sptk b0 // Return };; LOCAL_LIBM_END(__libm_error_region) .type __libm_error_support#,@function .global __libm_error_support#