/* Compute cubic root of double value. Copyright (C) 1997-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Dirk Alboth and Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include .section .rodata .align ALIGNARG(4) .type f7,@object f7: .double -0.145263899385486377 ASM_SIZE_DIRECTIVE(f7) .type f6,@object f6: .double 0.784932344976639262 ASM_SIZE_DIRECTIVE(f6) .type f5,@object f5: .double -1.83469277483613086 ASM_SIZE_DIRECTIVE(f5) .type f4,@object f4: .double 2.44693122563534430 ASM_SIZE_DIRECTIVE(f4) .type f3,@object f3: .double -2.11499494167371287 ASM_SIZE_DIRECTIVE(f3) .type f2,@object f2: .double 1.50819193781584896 ASM_SIZE_DIRECTIVE(f2) .type f1,@object f1: .double 0.354895765043919860 ASM_SIZE_DIRECTIVE(f1) #define CBRT2 1.2599210498948731648 #define ONE_CBRT2 0.793700525984099737355196796584 #define SQR_CBRT2 1.5874010519681994748 #define ONE_SQR_CBRT2 0.629960524947436582364439673883 .type factor,@object factor: .double ONE_SQR_CBRT2 .double ONE_CBRT2 .double 1.0 .double CBRT2 .double SQR_CBRT2 ASM_SIZE_DIRECTIVE(factor) .type two54,@object two54: .byte 0, 0, 0, 0, 0, 0, 0x50, 0x43 ASM_SIZE_DIRECTIVE(two54) #ifdef PIC #define MO(op) op##@GOTOFF(%ebx) #define MOX(op,x) op##@GOTOFF(%ebx,x,1) #else #define MO(op) op #define MOX(op,x) op(x) #endif .text ENTRY(__cbrt) movl 4(%esp), %ecx movl 8(%esp), %eax movl %eax, %edx andl $0x7fffffff, %eax orl %eax, %ecx jz 1f xorl %ecx, %ecx cmpl $0x7ff00000, %eax jae 1f #ifdef PIC pushl %ebx cfi_adjust_cfa_offset (4) cfi_rel_offset (ebx, 0) LOAD_PIC_REG (bx) #endif cmpl $0x00100000, %eax jae 2f #ifdef PIC fldl 8(%esp) #else fldl 4(%esp) #endif fmull MO(two54) movl $-54, %ecx #ifdef PIC fstpl 8(%esp) movl 12(%esp), %eax #else fstpl 4(%esp) movl 8(%esp), %eax #endif movl %eax, %edx andl $0x7fffffff, %eax 2: shrl $20, %eax andl $0x800fffff, %edx subl $1022, %eax orl $0x3fe00000, %edx addl %eax, %ecx #ifdef PIC movl %edx, 12(%esp) fldl 8(%esp) /* xm */ #else movl %edx, 8(%esp) fldl 4(%esp) /* xm */ #endif fabs /* The following code has two tracks: a) compute the normalized cbrt value b) compute xe/3 and xe%3 The right track computes the value for b) and this is done in an optimized way by avoiding division. But why two tracks at all? Very easy: efficiency. Some FP instruction can overlap with a certain amount of integer (and FP) instructions. So we get (except for the imull) all instructions for free. */ fld %st(0) /* xm : xm */ fmull MO(f7) /* f7*xm : xm */ movl $1431655766, %eax faddl MO(f6) /* f6+f7*xm : xm */ imull %ecx fmul %st(1) /* (f6+f7*xm)*xm : xm */ movl %ecx, %eax faddl MO(f5) /* f5+(f6+f7*xm)*xm : xm */ sarl $31, %eax fmul %st(1) /* (f5+(f6+f7*xm)*xm)*xm : xm */ subl %eax, %edx faddl MO(f4) /* f4+(f5+(f6+f7*xm)*xm)*xm : xm */ fmul %st(1) /* (f4+(f5+(f6+f7*xm)*xm)*xm)*xm : xm */ faddl MO(f3) /* f3+(f4+(f5+(f6+f7*xm)*xm)*xm)*xm : xm */ fmul %st(1) /* (f3+(f4+(f5+(f6+f7*xm)*xm)*xm)*xm)*xm : xm */ faddl MO(f2) /* f2+(f3+(f4+(f5+(f6+f7*xm)*xm)*xm)*xm)*xm : xm */ fmul %st(1) /* (f2+(f3+(f4+(f5+(f6+f7*xm)*xm)*xm)*xm)*xm)*xm : xm */ faddl MO(f1) /* u:=f1+(f2+(f3+(f4+(f5+(f6+f7*xm)*xm)*xm)*xm)*xm)*xm : xm */ fld %st /* u : u : xm */ fmul %st(1) /* u*u : u : xm */ fld %st(2) /* xm : u*u : u : xm */ fadd %st /* 2*xm : u*u : u : xm */ fxch %st(1) /* u*u : 2*xm : u : xm */ fmul %st(2) /* t2:=u*u*u : 2*xm : u : xm */ movl %edx, %eax fadd %st, %st(1) /* t2 : t2+2*xm : u : xm */ leal (%edx,%edx,2),%edx fadd %st(0) /* 2*t2 : t2+2*xm : u : xm */ subl %edx, %ecx faddp %st, %st(3) /* t2+2*xm : u : 2*t2+xm */ shll $3, %ecx fmulp /* u*(t2+2*xm) : 2*t2+xm */ fdivp %st, %st(1) /* u*(t2+2*xm)/(2*t2+xm) */ fmull MOX(16+factor,%ecx) /* u*(t2+2*xm)/(2*t2+xm)*FACT */ pushl %eax cfi_adjust_cfa_offset (4) fildl (%esp) /* xe/3 : u*(t2+2*xm)/(2*t2+xm)*FACT */ fxch /* u*(t2+2*xm)/(2*t2+xm)*FACT : xe/3 */ fscale /* u*(t2+2*xm)/(2*t2+xm)*FACT*2^xe/3 */ popl %edx cfi_adjust_cfa_offset (-4) #ifdef PIC movl 12(%esp), %eax popl %ebx cfi_adjust_cfa_offset (-4) cfi_restore (ebx) #else movl 8(%esp), %eax #endif testl %eax, %eax fstp %st(1) jns 4f fchs 4: ret /* Return the argument. */ 1: fldl 4(%esp) ret END(__cbrt) weak_alias (__cbrt, cbrt)