/* Inline math functions for i387. Copyright (C) 1995, 1996 Free Software Foundation, Inc. Contributed by John C. Bowman This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef __MATH_H #define __MATH_H #ifdef __GNUC__ #ifndef __NO_MATH_INLINES #ifdef __cplusplus #define __MATH_INLINE __inline #else #define __MATH_INLINE extern __inline #endif __MATH_INLINE double cos (double); __MATH_INLINE double sin (double); __MATH_INLINE double __expm1 (double __x); __MATH_INLINE double __expm1 (double __x) { register double __value, __exponent, __temp; __asm __volatile__ ("fldl2e # e^x - 1 = 2^(x * log2(e)) - 1\n\t" "fmul %%st(1) # x * log2(e)\n\t" "fstl %%st(1)\n\t" "frndint # int(x * log2(e))\n\t" "fxch\n\t" "fsub %%st(1) # fract(x * log2(e))\n\t" "f2xm1 # 2^(fract(x * log2(e))) - 1\n\t" "fscale # 2^(x * log2(e)) - 2^(int(x * log2(e)))\n\t" : "=t" (__value), "=u" (__exponent) : "0" (__x)); __asm __volatile__ ("fscale # 2^int(x * log2(e))\n\t" : "=t" (__temp) : "0" (1.0), "u" (__exponent)); __temp -= 1.0; return __temp + __value; } __MATH_INLINE double __sgn1 (double __x); __MATH_INLINE double __sgn1 (double __x) { return __x >= 0.0 ? 1.0 : -1.0; } __MATH_INLINE double sqrt (double __x); __MATH_INLINE double sqrt (double __x) { register double __value; __asm __volatile__ ("fsqrt" : "=t" (__value) : "0" (__x)); return __value; } __MATH_INLINE double fabs (double __x); __MATH_INLINE double fabs (double __x) { register double __value; __asm __volatile__ ("fabs" : "=t" (__value) : "0" (__x)); return __value; } __MATH_INLINE double sin (double __x); __MATH_INLINE double sin (double __x) { register double __value; __asm __volatile__ ("fsin" : "=t" (__value) : "0" (__x)); return __value; } __MATH_INLINE double cos (double __x); __MATH_INLINE double cos (double __x) { register double __value; __asm __volatile__ ("fcos" : "=t" (__value): "0" (__x)); return __value; } __MATH_INLINE double tan (double __x); __MATH_INLINE double tan (double __x) { register double __value; register double __value2 __attribute__ ((unused)); __asm __volatile__ ("fptan" : "=t" (__value2), "=u" (__value) : "0" (__x)); return __value; } __MATH_INLINE double atan2 (double __y, double __x); __MATH_INLINE double atan2 (double __y, double __x) { register double __value; __asm __volatile__ ("fpatan\n\t" "fldl %%st(0)" : "=t" (__value) : "0" (__x), "u" (__y)); return __value; } __MATH_INLINE double asin (double __x); __MATH_INLINE double asin (double __x) { return atan2 (__x, sqrt (1.0 - __x * __x)); } __MATH_INLINE double acos (double __x); __MATH_INLINE double acos (double __x) { return atan2 (sqrt (1.0 - __x * __x), __x); } __MATH_INLINE double atan (double __x); __MATH_INLINE double atan (double __x) { register double __value; __asm __volatile__ ("fld1\n\t" "fpatan" : "=t" (__value) : "0" (__x)); return __value; } __MATH_INLINE double exp (double __x); __MATH_INLINE double exp (double __x) { register double __value, __exponent; __asm __volatile__ ("fldl2e # e^x = 2^(x * log2(e))\n\t" "fmul %%st(1) # x * log2(e)\n\t" "fstl %%st(1)\n\t" "frndint # int(x * log2(e))\n\t" "fxch\n\t" "fsub %%st(1) # fract(x * log2(e))\n\t" "f2xm1 # 2^(fract(x * log2(e))) - 1\n\t" : "=t" (__value), "=u" (__exponent) : "0" (__x)); __value += 1.0; __asm __volatile__ ("fscale" : "=t" (__value) : "0" (__value), "u" (__exponent)); return __value; } __MATH_INLINE double sinh (double __x); __MATH_INLINE double sinh (double __x) { register double __exm1 = __expm1 (fabs (__x)); return 0.5 * (__exm1 / (__exm1 + 1.0) + __exm1) * __sgn1 (__x); } __MATH_INLINE double cosh (double __x); __MATH_INLINE double cosh (double __x) { register double __ex = exp (__x); return 0.5 * (__ex + 1.0 / __ex); } __MATH_INLINE double tanh (double __x); __MATH_INLINE double tanh (double __x) { register double __exm1 = __expm1 (-fabs (__x + __x)); return __exm1 / (__exm1 + 2.0) * __sgn1 (-__x); } __MATH_INLINE double log (double __x); __MATH_INLINE double log (double __x) { register double __value; __asm __volatile__ ("fldln2\n\t" "fxch\n\t" "fyl2x" : "=t" (__value) : "0" (__x)); return __value; } __MATH_INLINE double log10 (double __x); __MATH_INLINE double log10 (double __x) { register double __value; __asm __volatile__ ("fldlg2\n\t" "fxch\n\t" "fyl2x" : "=t" (__value) : "0" (__x)); return __value; } __MATH_INLINE double __log2 (double __x); __MATH_INLINE double __log2 (double __x) { register double __value; __asm __volatile__ ("fld1\n\t" "fxch\n\t" "fyl2x" : "=t" (__value) : "0" (__x)); return __value; } __MATH_INLINE double fmod (double __x, double __y); __MATH_INLINE double fmod (double __x, double __y) { register double __value; __asm __volatile__ ("1: fprem\n\t" "fstsw %%ax\n\t" "sahf\n\t" "jp 1b" : "=t" (__value) : "0" (__x), "u" (__y) : "ax", "cc"); return __value; } __MATH_INLINE double ldexp (double __x, int __y); __MATH_INLINE double ldexp (double __x, int __y) { register double __value; __asm __volatile__ ("fscale" : "=t" (__value) : "0" (__x), "u" ((double) __y)); return __value; } __MATH_INLINE double pow (double __x, double __y); __MATH_INLINE double pow (double __x, double __y) { register double __value, __exponent; long __p = (long) __y; if (__x == 0.0 && __y > 0.0) return 0.0; if (__y == (double) __p) { double __r = 1.0; if (__p == 0) return 1.0; if (__p < 0) { __p = -__p; __x = 1.0 / __x; } while (1) { if (__p & 1) __r *= __x; __p >>= 1; if (__p == 0) return __r; __x *= __x; } /* NOTREACHED */ } __asm __volatile__ ("fmul %%st(1) # y * log2(x)\n\t" "fstl %%st(1)\n\t" "frndint # int(y * log2(x))\n\t" "fxch\n\t" "fsub %%st(1) # fract(y * log2(x))\n\t" "f2xm1 # 2^(fract(y * log2(x))) - 1\n\t" : "=t" (__value), "=u" (__exponent) : "0" (__log2 (__x)), "1" (__y)); __value += 1.0; __asm __volatile__ ("fscale" : "=t" (__value) : "0" (__value), "u" (__exponent)); return __value; } __MATH_INLINE double floor (double __x); __MATH_INLINE double floor (double __x) { register double __value; __volatile unsigned short int __cw, __cwtmp; __asm __volatile ("fnstcw %0" : "=m" (__cw)); __cwtmp = (__cw & 0xf3ff) | 0x0400; /* rounding down */ __asm __volatile ("fldcw %0" : : "m" (__cwtmp)); __asm __volatile ("frndint" : "=t" (__value) : "0" (__x)); __asm __volatile ("fldcw %0" : : "m" (__cw)); return __value; } __MATH_INLINE double ceil (double __x); __MATH_INLINE double ceil (double __x) { register double __value; __volatile unsigned short int __cw, __cwtmp; __asm __volatile ("fnstcw %0" : "=m" (__cw)); __cwtmp = (__cw & 0xf3ff) | 0x0800; /* rounding up */ __asm __volatile ("fldcw %0" : : "m" (__cwtmp)); __asm __volatile ("frndint" : "=t" (__value) : "0" (__x)); __asm __volatile ("fldcw %0" : : "m" (__cw)); return __value; } /* Optimized versions for some non-standardized functions. */ #ifdef __USE_MISC __MATH_INLINE double __hypot (double __x, double __y); __MATH_INLINE double hypot (double __x, double __y) { return sqrt (__x * __x + __y * __y); } __MATH_INLINE double log1p (double __x) { register double __value; if (fabs (__x) >= 1.0 - 0.5 * M_SQRT2) __value = log (1.0 + __x); else __asm __volatile__ ("fldln2\n\t" "fxch\n\t" "fyl2xp1" : "=t" (__value) : "0" (__x)); return __value; } __MATH_INLINE double __asinh (double __x); __MATH_INLINE double asinh (double __x) { register double __y = fabs (__x); return log1p ((__y * __y / (sqrt (__y * __y + 1.0) + 1.0) + __y) * __sgn1 (__x)); } __MATH_INLINE double __acosh (double __x); __MATH_INLINE double acosh (double __x) { return log (__x + sqrt (__x - 1.0) * sqrt (__x + 1.0)); } __MATH_INLINE double __atanh (double __x); __MATH_INLINE double atanh (double __x) { register double __y = fabs (__x); return -0.5 * __log1p (-(__y + __y) / (1.0 + __y)) * __sgn1 (__x); } __MATH_INLINE double __coshm1 (double __x); __MATH_INLINE double coshm1 (double __x) { register double __exm1 = __expm1 (fabs (__x)); return 0.5 * (__exm1 / (__exm1 + 1.0)) * __exm1; } __MATH_INLINE double __acosh1p (double __x); __MATH_INLINE double acosh1p (double __x) { return __log1p (__x + sqrt (__x) * sqrt (__x + 2.0)); } __MATH_INLINE double __logb (double __x); __MATH_INLINE double logb (double __x) { register double __value; __asm __volatile__ ("fxtract\n\t" : "=t" (__value) : "0" (__x)); return __value; } __MATH_INLINE double __drem (double __x, double __y); __MATH_INLINE double drem (double __x, double __y) { register double __value; __asm __volatile__ ("1: fprem1\n\t" "fstsw %%ax\n\t" "sahf\n\t" "jp 1b" : "=t" (__value) : "0" (__x), "u" (__y) : "ax", "cc"); return __value; } __MATH_INLINE void __sincos (double __x, double *__sinx, double *__cosx); __MATH_INLINE void sincos (double __x, double *__sinx, double *__cosx) { register double __cosr, __sinr; __asm __volatile__ ("fsincos" : "=t" (__cosr), "=u" (__sinr) : "0" (__x)); *__sinx = __sinr; *__cosx = __cosr; } __MATH_INLINE double __sgn (double __x); __MATH_INLINE double sgn (double __x) { return (__x == 0.0 ? 0.0 : (__x > 0.0 ? 1.0 : -1.0)); } __MATH_INLINE double __pow2 (double __x); __MATH_INLINE double pow2 (double __x) { register double __value, __exponent; long __p = (long) __x; if (__x == (double) __p) return ldexp (1.0, __p); __asm __volatile__ ("fldl %%st(0)\n\t" "frndint # int(x)\n\t" "fxch\n\t" "fsub %%st(1) # fract(x)\n\t" "f2xm1 # 2^(fract(x)) - 1\n\t" : "=t" (__value), "=u" (__exponent) : "0" (__x)); __value += 1.0; __asm __volatile__ ("fscale" : "=t" (__value) : "0" (__value), "u" (__exponent)); return __value; } #endif /* __USE_MISC */ #endif /* __NO_MATH_INLINES */ #endif /* __GNUC__ */ #endif /* __MATH_H */