#include #include #define _FP_W_TYPE_SIZE 64 #define _FP_W_TYPE unsigned long long #define _FP_WS_TYPE signed long long #define _FP_I_TYPE long long #define _FP_MUL_MEAT_S(R,X,Y) \ _FP_MUL_MEAT_1_imm(_FP_WFRACBITS_S,R,X,Y) #define _FP_MUL_MEAT_D(R,X,Y) \ _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) #define _FP_MUL_MEAT_Q(R,X,Y) \ _FP_MUL_MEAT_2_wide_3mul(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm) #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv_norm(D,R,X,Y) #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv(Q,R,X,Y) #define _FP_NANFRAC_S ((_FP_QNANBIT_S << 1) - 1) #define _FP_NANFRAC_D ((_FP_QNANBIT_D << 1) - 1) #define _FP_NANFRAC_Q ((_FP_QNANBIT_Q << 1) - 1), -1 #define _FP_NANSIGN_S 0 #define _FP_NANSIGN_D 0 #define _FP_NANSIGN_Q 0 #define _FP_KEEPNANFRACP 1 #define _FP_QNANNEGATEDP 0 /* From my experiments it seems X is chosen unless one of the NaNs is sNaN, in which case the result is NANSIGN/NANFRAC. */ #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ do { \ if ((_FP_FRAC_HIGH_RAW_##fs(X) | \ _FP_FRAC_HIGH_RAW_##fs(Y)) & _FP_QNANBIT_##fs) \ { \ R##_s = _FP_NANSIGN_##fs; \ _FP_FRAC_SET_##wc(R,_FP_NANFRAC_##fs); \ } \ else \ { \ R##_s = X##_s; \ _FP_FRAC_COPY_##wc(R,X); \ } \ R##_c = FP_CLS_NAN; \ } while (0) #define _FP_DECL_EX fpu_control_t _fcw #define FP_ROUNDMODE (_fcw & _FPU_FPCR_RM_MASK) #define FP_RND_NEAREST FE_TONEAREST #define FP_RND_ZERO FE_TOWARDZERO #define FP_RND_PINF FE_UPWARD #define FP_RND_MINF FE_DOWNWARD #define FP_EX_INVALID FE_INVALID #define FP_EX_OVERFLOW FE_OVERFLOW #define FP_EX_UNDERFLOW FE_UNDERFLOW #define FP_EX_DIVZERO FE_DIVBYZERO #define FP_EX_INEXACT FE_INEXACT #define _FP_TININESS_AFTER_ROUNDING 0 #define FP_INIT_ROUNDMODE \ do { \ _FPU_GETCW (_fcw); \ } while (0) #define FP_HANDLE_EXCEPTIONS \ do { \ const float fp_max = __FLT_MAX__; \ const float fp_min = __FLT_MIN__; \ const float fp_1e32 = 1.0e32f; \ const float fp_zero = 0.0; \ const float fp_one = 1.0; \ unsigned fpsr; \ if (_fex & FP_EX_INVALID) \ { \ __asm__ __volatile__ ("fdiv\ts0, %s0, %s0" \ : \ : "w" (fp_zero) \ : "s0"); \ __asm__ __volatile__ ("mrs\t%0, fpsr" : "=r" (fpsr)); \ } \ if (_fex & FP_EX_DIVZERO) \ { \ __asm__ __volatile__ ("fdiv\ts0, %s0, %s1" \ : \ : "w" (fp_one), "w" (fp_zero) \ : "s0"); \ __asm__ __volatile__ ("mrs\t%0, fpsr" : "=r" (fpsr)); \ } \ if (_fex & FP_EX_OVERFLOW) \ { \ __asm__ __volatile__ ("fadd\ts0, %s0, %s1" \ : \ : "w" (fp_max), "w" (fp_1e32) \ : "s0"); \ __asm__ __volatile__ ("mrs\t%0, fpsr" : "=r" (fpsr)); \ } \ if (_fex & FP_EX_UNDERFLOW) \ { \ __asm__ __volatile__ ("fmul\ts0, %s0, %s0" \ : \ : "w" (fp_min) \ : "s0"); \ __asm__ __volatile__ ("mrs\t%0, fpsr" : "=r" (fpsr)); \ } \ if (_fex & FP_EX_INEXACT) \ { \ __asm__ __volatile__ ("fsub\ts0, %s0, %s1" \ : \ : "w" (fp_max), "w" (fp_one) \ : "s0"); \ __asm__ __volatile__ ("mrs\t%0, fpsr" : "=r" (fpsr)); \ } \ } while (0) #define FP_TRAPPING_EXCEPTIONS ((_fcw >> FE_EXCEPT_SHIFT) & FE_ALL_EXCEPT)