/* Internal function for converting integers to ASCII. Copyright (C) 1994-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Torbjorn Granlund and Ulrich Drepper . The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include #include <_itowa.h> /* Canonize environment. For some architectures not all values might be defined in the GMP header files. */ #ifndef UMUL_TIME # define UMUL_TIME 1 #endif #ifndef UDIV_TIME # define UDIV_TIME 3 #endif /* Control memory layout. */ #ifdef PACK # undef PACK # define PACK __attribute__ ((packed)) #else # define PACK #endif /* Declare local types. */ struct base_table_t { #if (UDIV_TIME > 2 * UMUL_TIME) mp_limb_t base_multiplier; #endif char flag; char post_shift; #if BITS_PER_MP_LIMB == 32 struct { char normalization_steps; char ndigits; mp_limb_t base PACK; #if UDIV_TIME > 2 * UMUL_TIME mp_limb_t base_ninv PACK; #endif } big; #endif }; /* To reduce the memory needed we include some fields of the tables only conditionally. */ #if UDIV_TIME > 2 * UMUL_TIME # define SEL1(X) X, # define SEL2(X) ,X #else # define SEL1(X) # define SEL2(X) #endif /* Factor table for the different bases. */ extern const struct base_table_t _itoa_base_table[] attribute_hidden; /* Lower-case digits. */ extern const wchar_t _itowa_lower_digits[] attribute_hidden; /* Upper-case digits. */ extern const wchar_t _itowa_upper_digits[] attribute_hidden; #if _ITOA_NEEDED wchar_t * _itowa (unsigned long long int value, wchar_t *buflim, unsigned int base, int upper_case) { const wchar_t *digits = (upper_case ? _itowa_upper_digits : _itowa_lower_digits); wchar_t *bp = buflim; const struct base_table_t *brec = &_itoa_base_table[base - 2]; switch (base) { # define RUN_2N(BITS) \ do \ { \ /* `unsigned long long int' always has 64 bits. */ \ mp_limb_t work_hi = value >> (64 - BITS_PER_MP_LIMB); \ \ if (BITS_PER_MP_LIMB == 32) \ { \ if (work_hi != 0) \ { \ mp_limb_t work_lo; \ int cnt; \ \ work_lo = value & 0xfffffffful; \ for (cnt = BITS_PER_MP_LIMB / BITS; cnt > 0; --cnt) \ { \ *--bp = digits[work_lo & ((1ul << BITS) - 1)]; \ work_lo >>= BITS; \ } \ if (BITS_PER_MP_LIMB % BITS != 0) \ { \ work_lo \ |= ((work_hi \ & ((1 << (BITS - BITS_PER_MP_LIMB%BITS)) \ - 1)) \ << BITS_PER_MP_LIMB % BITS); \ work_hi >>= BITS - BITS_PER_MP_LIMB % BITS; \ if (work_hi == 0) \ work_hi = work_lo; \ else \ *--bp = digits[work_lo]; \ } \ } \ else \ work_hi = value & 0xfffffffful; \ } \ do \ { \ *--bp = digits[work_hi & ((1 << BITS) - 1)]; \ work_hi >>= BITS; \ } \ while (work_hi != 0); \ } \ while (0) case 8: RUN_2N (3); break; case 16: RUN_2N (4); break; default: { # if BITS_PER_MP_LIMB == 64 mp_limb_t base_multiplier = brec->base_multiplier; if (brec->flag) while (value != 0) { mp_limb_t quo, rem, x; mp_limb_t dummy __attribute__ ((unused)); umul_ppmm (x, dummy, value, base_multiplier); quo = (x + ((value - x) >> 1)) >> (brec->post_shift - 1); rem = value - quo * base; *--bp = digits[rem]; value = quo; } else while (value != 0) { mp_limb_t quo, rem, x; mp_limb_t dummy __attribute__ ((unused)); umul_ppmm (x, dummy, value, base_multiplier); quo = x >> brec->post_shift; rem = value - quo * base; *--bp = digits[rem]; value = quo; } # endif # if BITS_PER_MP_LIMB == 32 mp_limb_t t[3]; int n; /* First convert x0 to 1-3 words in base s->big.base. Optimize for frequent cases of 32 bit numbers. */ if ((mp_limb_t) (value >> 32) >= 1) { # if UDIV_TIME > 2 * UMUL_TIME || UDIV_NEEDS_NORMALIZATION int big_normalization_steps = brec->big.normalization_steps; mp_limb_t big_base_norm = brec->big.base << big_normalization_steps; # endif if ((mp_limb_t) (value >> 32) >= brec->big.base) { mp_limb_t x1hi, x1lo, r; /* If you want to optimize this, take advantage of that the quotient in the first udiv_qrnnd will always be very small. It might be faster just to subtract in a tight loop. */ # if UDIV_TIME > 2 * UMUL_TIME mp_limb_t x, xh, xl; if (big_normalization_steps == 0) xh = 0; else xh = (mp_limb_t) (value >> (64 - big_normalization_steps)); xl = (mp_limb_t) (value >> (32 - big_normalization_steps)); udiv_qrnnd_preinv (x1hi, r, xh, xl, big_base_norm, brec->big.base_ninv); xl = ((mp_limb_t) value) << big_normalization_steps; udiv_qrnnd_preinv (x1lo, x, r, xl, big_base_norm, brec->big.base_ninv); t[2] = x >> big_normalization_steps; if (big_normalization_steps == 0) xh = x1hi; else xh = ((x1hi << big_normalization_steps) | (x1lo >> (32 - big_normalization_steps))); xl = x1lo << big_normalization_steps; udiv_qrnnd_preinv (t[0], x, xh, xl, big_base_norm, brec->big.base_ninv); t[1] = x >> big_normalization_steps; # elif UDIV_NEEDS_NORMALIZATION mp_limb_t x, xh, xl; if (big_normalization_steps == 0) xh = 0; else xh = (mp_limb_t) (value >> 64 - big_normalization_steps); xl = (mp_limb_t) (value >> 32 - big_normalization_steps); udiv_qrnnd (x1hi, r, xh, xl, big_base_norm); xl = ((mp_limb_t) value) << big_normalization_steps; udiv_qrnnd (x1lo, x, r, xl, big_base_norm); t[2] = x >> big_normalization_steps; if (big_normalization_steps == 0) xh = x1hi; else xh = ((x1hi << big_normalization_steps) | (x1lo >> 32 - big_normalization_steps)); xl = x1lo << big_normalization_steps; udiv_qrnnd (t[0], x, xh, xl, big_base_norm); t[1] = x >> big_normalization_steps; # else udiv_qrnnd (x1hi, r, 0, (mp_limb_t) (value >> 32), brec->big.base); udiv_qrnnd (x1lo, t[2], r, (mp_limb_t) value, brec->big.base); udiv_qrnnd (t[0], t[1], x1hi, x1lo, brec->big.base); # endif n = 3; } else { # if UDIV_TIME > 2 * UMUL_TIME mp_limb_t x; value <<= brec->big.normalization_steps; udiv_qrnnd_preinv (t[0], x, (mp_limb_t) (value >> 32), (mp_limb_t) value, big_base_norm, brec->big.base_ninv); t[1] = x >> brec->big.normalization_steps; # elif UDIV_NEEDS_NORMALIZATION mp_limb_t x; value <<= big_normalization_steps; udiv_qrnnd (t[0], x, (mp_limb_t) (value >> 32), (mp_limb_t) value, big_base_norm); t[1] = x >> big_normalization_steps; # else udiv_qrnnd (t[0], t[1], (mp_limb_t) (value >> 32), (mp_limb_t) value, brec->big.base); # endif n = 2; } } else { t[0] = value; n = 1; } /* Convert the 1-3 words in t[], word by word, to ASCII. */ do { mp_limb_t ti = t[--n]; int ndig_for_this_limb = 0; # if UDIV_TIME > 2 * UMUL_TIME mp_limb_t base_multiplier = brec->base_multiplier; if (brec->flag) while (ti != 0) { mp_limb_t quo, rem, x; mp_limb_t dummy __attribute__ ((unused)); umul_ppmm (x, dummy, ti, base_multiplier); quo = (x + ((ti - x) >> 1)) >> (brec->post_shift - 1); rem = ti - quo * base; *--bp = digits[rem]; ti = quo; ++ndig_for_this_limb; } else while (ti != 0) { mp_limb_t quo, rem, x; mp_limb_t dummy __attribute__ ((unused)); umul_ppmm (x, dummy, ti, base_multiplier); quo = x >> brec->post_shift; rem = ti - quo * base; *--bp = digits[rem]; ti = quo; ++ndig_for_this_limb; } # else while (ti != 0) { mp_limb_t quo, rem; quo = ti / base; rem = ti % base; *--bp = digits[rem]; ti = quo; ++ndig_for_this_limb; } # endif /* If this wasn't the most significant word, pad with zeros. */ if (n != 0) while (ndig_for_this_limb < brec->big.ndigits) { *--bp = '0'; ++ndig_for_this_limb; } } while (n != 0); # endif } break; } return bp; } #endif