/* Optimized strcmp implementation for PowerPC64. Copyright (C) 2003, 2006 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA. */ #include #include #include /* int [r3] memcmp (const char *s1 [r3], const char *s2 [r4], size_t size [r5]) */ EALIGN (BP_SYM(memcmp), 4, 0) CALL_MCOUNT 3 #define rTMP r0 #define rRTN r3 #define rSTR1 r3 /* first string arg */ #define rSTR2 r4 /* second string arg */ #define rN r5 /* max string length */ /* Note: The Bounded pointer support in this code is broken. This code was inherited from PPC32 and and that support was never completed. Current PPC gcc does not support -fbounds-check or -fbounded-pointers. */ #define rWORD1 r6 /* current word in s1 */ #define rWORD2 r7 /* current word in s2 */ #define rWORD3 r8 /* next word in s1 */ #define rWORD4 r9 /* next word in s2 */ #define rWORD5 r10 /* next word in s1 */ #define rWORD6 r11 /* next word in s2 */ #define rBITDIF r12 /* bits that differ in s1 & s2 words */ #define rWORD7 r30 /* next word in s1 */ #define rWORD8 r31 /* next word in s2 */ xor rTMP, rSTR2, rSTR1 cmpldi cr6, rN, 0 cmpldi cr1, rN, 12 clrldi. rTMP, rTMP, 61 clrldi rBITDIF, rSTR1, 61 cmpldi cr5, rBITDIF, 0 beq- cr6, L(zeroLength) dcbt 0,rSTR1 dcbt 0,rSTR2 /* If less than 8 bytes or not aligned, use the unalligned byte loop. */ blt cr1, L(bytealigned) std rWORD8,-8(r1) cfi_offset(rWORD8,-8) std rWORD7,-16(r1) cfi_offset(rWORD7,-16) bne L(unaligned) /* At this point we know both strings have the same alignment and the compare length is at least 8 bytes. rBITDIF containes the low order 3 bits of rSTR1 and cr5 contains the result of the logical compare of rBITDIF to 0. If rBITDIF == 0 then we are already double word aligned and can perform the DWaligned loop. Otherwise we know the two strings have the same alignment (but not yet DW). So we can force the string addresses to the next lower DW boundary and special case this first DW word using shift left to ellimiate bits preceeding the first byte. Since we want to join the normal (DWaligned) compare loop, starting at the second double word, we need to adjust the length (rN) and special case the loop versioning for the first DW. This insures that the loop count is correct and the first DW (shifted) is in the expected resister pair. */ .align 4 L(samealignment): clrrdi rSTR1, rSTR1, 3 clrrdi rSTR2, rSTR2, 3 beq cr5, L(DWaligned) add rN, rN, rBITDIF sldi r11, rBITDIF, 3 srdi rTMP, rN, 5 /* Divide by 32 */ andi. rBITDIF, rN, 24 /* Get the DW remainder */ ld rWORD1, 0(rSTR1) ld rWORD2, 0(rSTR2) cmpldi cr1, rBITDIF, 16 cmpldi cr7, rN, 32 clrldi rN, rN, 61 beq L(dPs4) mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ bgt cr1, L(dPs3) beq cr1, L(dPs2) /* Remainder is 8 */ .align 3 L(dsP1): sld rWORD5, rWORD1, r11 sld rWORD6, rWORD2, r11 cmpld cr5, rWORD5, rWORD6 blt cr7, L(dP1x) /* Do something useful in this cycle since we have to branch anyway. */ ld rWORD1, 8(rSTR1) ld rWORD2, 8(rSTR2) cmpld cr0, rWORD1, rWORD2 b L(dP1e) /* Remainder is 16 */ .align 4 L(dPs2): sld rWORD5, rWORD1, r11 sld rWORD6, rWORD2, r11 cmpld cr6, rWORD5, rWORD6 blt cr7, L(dP2x) /* Do something useful in this cycle since we have to branch anyway. */ ld rWORD7, 8(rSTR1) ld rWORD8, 8(rSTR2) cmpld cr5, rWORD7, rWORD8 b L(dP2e) /* Remainder is 24 */ .align 4 L(dPs3): sld rWORD3, rWORD1, r11 sld rWORD4, rWORD2, r11 cmpld cr1, rWORD3, rWORD4 b L(dP3e) /* Count is a multiple of 32, remainder is 0 */ .align 4 L(dPs4): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ sld rWORD1, rWORD1, r11 sld rWORD2, rWORD2, r11 cmpld cr0, rWORD1, rWORD2 b L(dP4e) /* At this point we know both strings are double word aligned and the compare length is at least 8 bytes. */ .align 4 L(DWaligned): andi. rBITDIF, rN, 24 /* Get the DW remainder */ srdi rTMP, rN, 5 /* Divide by 32 */ cmpldi cr1, rBITDIF, 16 cmpldi cr7, rN, 32 clrldi rN, rN, 61 beq L(dP4) bgt cr1, L(dP3) beq cr1, L(dP2) /* Remainder is 8 */ .align 4 L(dP1): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ /* Normally we'd use rWORD7/rWORD8 here, but since we might exit early (8-15 byte compare), we want to use only volitile registers. This means we can avoid restoring non-volitile registers since we did not change any on the early exit path. The key here is the non-early exit path only cares about the condition code (cr5), not about which register pair was used. */ ld rWORD5, 0(rSTR1) ld rWORD6, 0(rSTR2) cmpld cr5, rWORD5, rWORD6 blt cr7, L(dP1x) ld rWORD1, 8(rSTR1) ld rWORD2, 8(rSTR2) cmpld cr0, rWORD1, rWORD2 L(dP1e): ld rWORD3, 16(rSTR1) ld rWORD4, 16(rSTR2) cmpld cr1, rWORD3, rWORD4 ld rWORD5, 24(rSTR1) ld rWORD6, 24(rSTR2) cmpld cr6, rWORD5, rWORD6 bne cr5, L(dLcr5) bne cr0, L(dLcr0) ldu rWORD7, 32(rSTR1) ldu rWORD8, 32(rSTR2) bne cr1, L(dLcr1) cmpld cr5, rWORD7, rWORD8 bdnz L(dLoop) bne cr6, L(dLcr6) ld rWORD8,-8(r1) ld rWORD7,-16(r1) .align 3 L(dP1x): sldi. r12, rN, 3 bne cr5, L(dLcr5) subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */ bne L(d00) li rRTN, 0 blr /* Remainder is 16 */ .align 4 L(dP2): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ ld rWORD5, 0(rSTR1) ld rWORD6, 0(rSTR2) cmpld cr6, rWORD5, rWORD6 blt cr7, L(dP2x) ld rWORD7, 8(rSTR1) ld rWORD8, 8(rSTR2) cmpld cr5, rWORD7, rWORD8 L(dP2e): ld rWORD1, 16(rSTR1) ld rWORD2, 16(rSTR2) cmpld cr0, rWORD1, rWORD2 ld rWORD3, 24(rSTR1) ld rWORD4, 24(rSTR2) cmpld cr1, rWORD3, rWORD4 addi rSTR1, rSTR1, 8 addi rSTR2, rSTR2, 8 bne cr6, L(dLcr6) bne cr5, L(dLcr5) b L(dLoop2) /* Again we are on a early exit path (16-23 byte compare), we want to only use volitile registers and avoid restoring non-volitile registers. */ .align 4 L(dP2x): ld rWORD3, 8(rSTR1) ld rWORD4, 8(rSTR2) cmpld cr5, rWORD3, rWORD4 sldi. r12, rN, 3 bne cr6, L(dLcr6) addi rSTR1, rSTR1, 8 addi rSTR2, rSTR2, 8 bne cr5, L(dLcr5) subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */ bne L(d00) li rRTN, 0 blr /* Remainder is 24 */ .align 4 L(dP3): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ ld rWORD3, 0(rSTR1) ld rWORD4, 0(rSTR2) cmpld cr1, rWORD3, rWORD4 L(dP3e): ld rWORD5, 8(rSTR1) ld rWORD6, 8(rSTR2) cmpld cr6, rWORD5, rWORD6 blt cr7, L(dP3x) ld rWORD7, 16(rSTR1) ld rWORD8, 16(rSTR2) cmpld cr5, rWORD7, rWORD8 ld rWORD1, 24(rSTR1) ld rWORD2, 24(rSTR2) cmpld cr0, rWORD1, rWORD2 addi rSTR1, rSTR1, 16 addi rSTR2, rSTR2, 16 bne cr1, L(dLcr1) bne cr6, L(dLcr6) b L(dLoop1) /* Again we are on a early exit path (24-31 byte compare), we want to only use volitile registers and avoid restoring non-volitile registers. */ .align 4 L(dP3x): ld rWORD1, 16(rSTR1) ld rWORD2, 16(rSTR2) cmpld cr5, rWORD1, rWORD2 sldi. r12, rN, 3 bne cr1, L(dLcr1) addi rSTR1, rSTR1, 16 addi rSTR2, rSTR2, 16 bne cr6, L(dLcr6) subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */ bne cr5, L(dLcr5) bne L(d00) li rRTN, 0 blr /* Count is a multiple of 32, remainder is 0 */ .align 4 L(dP4): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ ld rWORD1, 0(rSTR1) ld rWORD2, 0(rSTR2) cmpld cr0, rWORD1, rWORD2 L(dP4e): ld rWORD3, 8(rSTR1) ld rWORD4, 8(rSTR2) cmpld cr1, rWORD3, rWORD4 ld rWORD5, 16(rSTR1) ld rWORD6, 16(rSTR2) cmpld cr6, rWORD5, rWORD6 ldu rWORD7, 24(rSTR1) ldu rWORD8, 24(rSTR2) cmpld cr5, rWORD7, rWORD8 bne cr0, L(dLcr0) bne cr1, L(dLcr1) bdz- L(d24) /* Adjust CTR as we start with +4 */ /* This is the primary loop */ .align 4 L(dLoop): ld rWORD1, 8(rSTR1) ld rWORD2, 8(rSTR2) cmpld cr1, rWORD3, rWORD4 bne cr6, L(dLcr6) L(dLoop1): ld rWORD3, 16(rSTR1) ld rWORD4, 16(rSTR2) cmpld cr6, rWORD5, rWORD6 bne cr5, L(dLcr5) L(dLoop2): ld rWORD5, 24(rSTR1) ld rWORD6, 24(rSTR2) cmpld cr5, rWORD7, rWORD8 bne cr0, L(dLcr0) L(dLoop3): ldu rWORD7, 32(rSTR1) ldu rWORD8, 32(rSTR2) bne- cr1, L(dLcr1) cmpld cr0, rWORD1, rWORD2 bdnz+ L(dLoop) L(dL4): cmpld cr1, rWORD3, rWORD4 bne cr6, L(dLcr6) cmpld cr6, rWORD5, rWORD6 bne cr5, L(dLcr5) cmpld cr5, rWORD7, rWORD8 L(d44): bne cr0, L(dLcr0) L(d34): bne cr1, L(dLcr1) L(d24): bne cr6, L(dLcr6) L(d14): sldi. r12, rN, 3 bne cr5, L(dLcr5) L(d04): ld rWORD8,-8(r1) ld rWORD7,-16(r1) subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */ beq L(zeroLength) /* At this point we have a remainder of 1 to 7 bytes to compare. Since we are aligned it is safe to load the whole double word, and use shift right double to elliminate bits beyond the compare length. */ L(d00): ld rWORD1, 8(rSTR1) ld rWORD2, 8(rSTR2) srd rWORD1, rWORD1, rN srd rWORD2, rWORD2, rN cmpld cr5, rWORD1, rWORD2 bne cr5, L(dLcr5x) li rRTN, 0 blr .align 4 L(dLcr0): ld rWORD8,-8(r1) ld rWORD7,-16(r1) li rRTN, 1 bgtlr cr0 li rRTN, -1 blr .align 4 L(dLcr1): ld rWORD8,-8(r1) ld rWORD7,-16(r1) li rRTN, 1 bgtlr cr1 li rRTN, -1 blr .align 4 L(dLcr6): ld rWORD8,-8(r1) ld rWORD7,-16(r1) li rRTN, 1 bgtlr cr6 li rRTN, -1 blr .align 4 L(dLcr5): ld rWORD8,-8(r1) ld rWORD7,-16(r1) L(dLcr5x): li rRTN, 1 bgtlr cr5 li rRTN, -1 blr .align 4 L(bytealigned): mtctr rN /* Power4 wants mtctr 1st in dispatch group */ beq- cr6, L(zeroLength) /* We need to prime this loop. This loop is swing modulo scheduled to avoid pipe delays. The dependent instruction latencies (load to compare to conditional branch) is 2 to 3 cycles. In this loop each dispatch group ends in a branch and takes 1 cycle. Effectively the first iteration of the loop only serves to load operands and branches based on compares are delayed until the next loop. So we must precondition some registers and condition codes so that we don't exit the loop early on the first iteration. */ lbz rWORD1, 0(rSTR1) lbz rWORD2, 0(rSTR2) bdz- L(b11) cmpld cr0, rWORD1, rWORD2 lbz rWORD3, 1(rSTR1) lbz rWORD4, 1(rSTR2) bdz- L(b12) cmpld cr1, rWORD3, rWORD4 lbzu rWORD5, 2(rSTR1) lbzu rWORD6, 2(rSTR2) bdz- L(b13) .align 4 L(bLoop): lbzu rWORD1, 1(rSTR1) lbzu rWORD2, 1(rSTR2) bne- cr0, L(bLcr0) cmpld cr6, rWORD5, rWORD6 bdz- L(b3i) lbzu rWORD3, 1(rSTR1) lbzu rWORD4, 1(rSTR2) bne- cr1, L(bLcr1) cmpld cr0, rWORD1, rWORD2 bdz- L(b2i) lbzu rWORD5, 1(rSTR1) lbzu rWORD6, 1(rSTR2) bne- cr6, L(bLcr6) cmpld cr1, rWORD3, rWORD4 bdnz+ L(bLoop) /* We speculatively loading bytes before we have tested the previous bytes. But we must avoid overrunning the length (in the ctr) to prevent these speculative loads from causing a segfault. In this case the loop will exit early (before the all pending bytes are tested. In this case we must complete the pending operations before returning. */ L(b1i): bne- cr0, L(bLcr0) bne- cr1, L(bLcr1) b L(bx56) .align 4 L(b2i): bne- cr6, L(bLcr6) bne- cr0, L(bLcr0) b L(bx34) .align 4 L(b3i): bne- cr1, L(bLcr1) bne- cr6, L(bLcr6) b L(bx12) .align 4 L(bLcr0): li rRTN, 1 bgtlr cr0 li rRTN, -1 blr L(bLcr1): li rRTN, 1 bgtlr cr1 li rRTN, -1 blr L(bLcr6): li rRTN, 1 bgtlr cr6 li rRTN, -1 blr L(b13): bne- cr0, L(bx12) bne- cr1, L(bx34) L(bx56): sub rRTN, rWORD5, rWORD6 blr nop L(b12): bne- cr0, L(bx12) L(bx34): sub rRTN, rWORD3, rWORD4 blr L(b11): L(bx12): sub rRTN, rWORD1, rWORD2 blr .align 4 L(zeroLengthReturn): ld rWORD8,-8(r1) ld rWORD7,-16(r1) L(zeroLength): li rRTN, 0 blr .align 4 /* At this point we know the strings have different alignment and the compare length is at least 8 bytes. rBITDIF containes the low order 3 bits of rSTR1 and cr5 contains the result of the logical compare of rBITDIF to 0. If rBITDIF == 0 then rStr1 is double word aligned and can perform the DWunaligned loop. Otherwise we know that rSTR1 is not aready DW aligned yet. So we can force the string addresses to the next lower DW boundary and special case this first DW word using shift left to ellimiate bits preceeding the first byte. Since we want to join the normal (DWaligned) compare loop, starting at the second double word, we need to adjust the length (rN) and special case the loop versioning for the first DW. This insures that the loop count is correct and the first DW (shifted) is in the expected resister pair. */ #define rSHL r29 /* Unaligned shift left count. */ #define rSHR r28 /* Unaligned shift right count. */ #define rB r27 /* Left rotation temp for rWORD2. */ #define rD r26 /* Left rotation temp for rWORD4. */ #define rF r25 /* Left rotation temp for rWORD6. */ #define rH r24 /* Left rotation temp for rWORD8. */ #define rA r0 /* Right rotation temp for rWORD2. */ #define rC r12 /* Right rotation temp for rWORD4. */ #define rE r0 /* Right rotation temp for rWORD6. */ #define rG r12 /* Right rotation temp for rWORD8. */ L(unaligned): std r29,-24(r1) cfi_offset(r29,-24) clrldi rSHL, rSTR2, 61 beq- cr6, L(duzeroLength) std r28,-32(r1) cfi_offset(r28,-32) beq cr5, L(DWunaligned) std r27,-40(r1) cfi_offset(r27,-40) /* Adjust the logical start of rSTR2 ro compensate for the extra bits in the 1st rSTR1 DW. */ sub r27, rSTR2, rBITDIF /* But do not attempt to address the DW before that DW that contains the actual start of rSTR2. */ clrrdi rSTR2, rSTR2, 3 std r26,-48(r1) cfi_offset(r26,-48) /* Compute the leaft/right shift counts for the unalign rSTR2, compensating for the logical (DW aligned) start of rSTR1. */ clrldi rSHL, r27, 61 clrrdi rSTR1, rSTR1, 3 std r25,-56(r1) cfi_offset(r25,-56) sldi rSHL, rSHL, 3 cmpld cr5, r27, rSTR2 add rN, rN, rBITDIF sldi r11, rBITDIF, 3 std r24,-64(r1) cfi_offset(r24,-64) subfic rSHR, rSHL, 64 srdi rTMP, rN, 5 /* Divide by 32 */ andi. rBITDIF, rN, 24 /* Get the DW remainder */ /* We normally need to load 2 DWs to start the unaligned rSTR2, but in this special case those bits may be discarded anyway. Also we must avoid loading a DW where none of the bits are part of rSTR2 as this may cross a page boundary and cause a page fault. */ li rWORD8, 0 blt cr5, L(dus0) ld rWORD8, 0(rSTR2) la rSTR2, 8(rSTR2) sld rWORD8, rWORD8, rSHL L(dus0): ld rWORD1, 0(rSTR1) ld rWORD2, 0(rSTR2) cmpldi cr1, rBITDIF, 16 cmpldi cr7, rN, 32 srd rG, rWORD2, rSHR clrldi rN, rN, 61 beq L(duPs4) mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ or rWORD8, rG, rWORD8 bgt cr1, L(duPs3) beq cr1, L(duPs2) /* Remainder is 8 */ .align 4 L(dusP1): sld rB, rWORD2, rSHL sld rWORD7, rWORD1, r11 sld rWORD8, rWORD8, r11 bge cr7, L(duP1e) /* At this point we exit early with the first double word compare complete and remainder of 0 to 7 bytes. See L(du14) for details on how we handle the remaining bytes. */ cmpld cr5, rWORD7, rWORD8 sldi. rN, rN, 3 bne cr5, L(duLcr5) cmpld cr7, rN, rSHR beq L(duZeroReturn) li rA, 0 ble cr7, L(dutrim) ld rWORD2, 8(rSTR2) srd rA, rWORD2, rSHR b L(dutrim) /* Remainder is 16 */ .align 4 L(duPs2): sld rH, rWORD2, rSHL sld rWORD5, rWORD1, r11 sld rWORD6, rWORD8, r11 b L(duP2e) /* Remainder is 24 */ .align 4 L(duPs3): sld rF, rWORD2, rSHL sld rWORD3, rWORD1, r11 sld rWORD4, rWORD8, r11 b L(duP3e) /* Count is a multiple of 32, remainder is 0 */ .align 4 L(duPs4): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ or rWORD8, rG, rWORD8 sld rD, rWORD2, rSHL sld rWORD1, rWORD1, r11 sld rWORD2, rWORD8, r11 b L(duP4e) /* At this point we know rSTR1 is double word aligned and the compare length is at least 8 bytes. */ .align 4 L(DWunaligned): std r27,-40(r1) cfi_offset(r27,-40) clrrdi rSTR2, rSTR2, 3 std r26,-48(r1) cfi_offset(r26,-48) srdi rTMP, rN, 5 /* Divide by 32 */ std r25,-56(r1) cfi_offset(r25,-56) andi. rBITDIF, rN, 24 /* Get the DW remainder */ std r24,-64(r1) cfi_offset(r24,-64) sldi rSHL, rSHL, 3 ld rWORD6, 0(rSTR2) ldu rWORD8, 8(rSTR2) cmpldi cr1, rBITDIF, 16 cmpldi cr7, rN, 32 clrldi rN, rN, 61 subfic rSHR, rSHL, 64 sld rH, rWORD6, rSHL beq L(duP4) mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ bgt cr1, L(duP3) beq cr1, L(duP2) /* Remainder is 8 */ .align 4 L(duP1): srd rG, rWORD8, rSHR ld rWORD7, 0(rSTR1) sld rB, rWORD8, rSHL or rWORD8, rG, rH blt cr7, L(duP1x) L(duP1e): ld rWORD1, 8(rSTR1) ld rWORD2, 8(rSTR2) cmpld cr5, rWORD7, rWORD8 srd rA, rWORD2, rSHR sld rD, rWORD2, rSHL or rWORD2, rA, rB ld rWORD3, 16(rSTR1) ld rWORD4, 16(rSTR2) cmpld cr0, rWORD1, rWORD2 srd rC, rWORD4, rSHR sld rF, rWORD4, rSHL bne cr5, L(duLcr5) or rWORD4, rC, rD ld rWORD5, 24(rSTR1) ld rWORD6, 24(rSTR2) cmpld cr1, rWORD3, rWORD4 srd rE, rWORD6, rSHR sld rH, rWORD6, rSHL bne cr0, L(duLcr0) or rWORD6, rE, rF cmpld cr6, rWORD5, rWORD6 b L(duLoop3) .align 4 /* At this point we exit early with the first double word compare complete and remainder of 0 to 7 bytes. See L(du14) for details on how we handle the remaining bytes. */ L(duP1x): cmpld cr5, rWORD7, rWORD8 sldi. rN, rN, 3 bne cr5, L(duLcr5) cmpld cr7, rN, rSHR beq L(duZeroReturn) li rA, 0 ble cr7, L(dutrim) ld rWORD2, 8(rSTR2) srd rA, rWORD2, rSHR b L(dutrim) /* Remainder is 16 */ .align 4 L(duP2): srd rE, rWORD8, rSHR ld rWORD5, 0(rSTR1) or rWORD6, rE, rH sld rH, rWORD8, rSHL L(duP2e): ld rWORD7, 8(rSTR1) ld rWORD8, 8(rSTR2) cmpld cr6, rWORD5, rWORD6 srd rG, rWORD8, rSHR sld rB, rWORD8, rSHL or rWORD8, rG, rH blt cr7, L(duP2x) ld rWORD1, 16(rSTR1) ld rWORD2, 16(rSTR2) cmpld cr5, rWORD7, rWORD8 bne cr6, L(duLcr6) srd rA, rWORD2, rSHR sld rD, rWORD2, rSHL or rWORD2, rA, rB ld rWORD3, 24(rSTR1) ld rWORD4, 24(rSTR2) cmpld cr0, rWORD1, rWORD2 bne cr5, L(duLcr5) srd rC, rWORD4, rSHR sld rF, rWORD4, rSHL or rWORD4, rC, rD addi rSTR1, rSTR1, 8 addi rSTR2, rSTR2, 8 cmpld cr1, rWORD3, rWORD4 b L(duLoop2) .align 4 L(duP2x): cmpld cr5, rWORD7, rWORD8 addi rSTR1, rSTR1, 8 addi rSTR2, rSTR2, 8 bne cr6, L(duLcr6) sldi. rN, rN, 3 bne cr5, L(duLcr5) cmpld cr7, rN, rSHR beq L(duZeroReturn) li rA, 0 ble cr7, L(dutrim) ld rWORD2, 8(rSTR2) srd rA, rWORD2, rSHR b L(dutrim) /* Remainder is 24 */ .align 4 L(duP3): srd rC, rWORD8, rSHR ld rWORD3, 0(rSTR1) sld rF, rWORD8, rSHL or rWORD4, rC, rH L(duP3e): ld rWORD5, 8(rSTR1) ld rWORD6, 8(rSTR2) cmpld cr1, rWORD3, rWORD4 srd rE, rWORD6, rSHR sld rH, rWORD6, rSHL or rWORD6, rE, rF ld rWORD7, 16(rSTR1) ld rWORD8, 16(rSTR2) cmpld cr6, rWORD5, rWORD6 bne cr1, L(duLcr1) srd rG, rWORD8, rSHR sld rB, rWORD8, rSHL or rWORD8, rG, rH blt cr7, L(duP3x) ld rWORD1, 24(rSTR1) ld rWORD2, 24(rSTR2) cmpld cr5, rWORD7, rWORD8 bne cr6, L(duLcr6) srd rA, rWORD2, rSHR sld rD, rWORD2, rSHL or rWORD2, rA, rB addi rSTR1, rSTR1, 16 addi rSTR2, rSTR2, 16 cmpld cr0, rWORD1, rWORD2 b L(duLoop1) .align 4 L(duP3x): addi rSTR1, rSTR1, 16 addi rSTR2, rSTR2, 16 bne cr1, L(duLcr1) cmpld cr5, rWORD7, rWORD8 bne cr6, L(duLcr6) sldi. rN, rN, 3 bne cr5, L(duLcr5) cmpld cr7, rN, rSHR beq L(duZeroReturn) li rA, 0 ble cr7, L(dutrim) ld rWORD2, 8(rSTR2) srd rA, rWORD2, rSHR b L(dutrim) /* Count is a multiple of 32, remainder is 0 */ .align 4 L(duP4): mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ srd rA, rWORD8, rSHR ld rWORD1, 0(rSTR1) sld rD, rWORD8, rSHL or rWORD2, rA, rH L(duP4e): ld rWORD3, 8(rSTR1) ld rWORD4, 8(rSTR2) cmpld cr0, rWORD1, rWORD2 srd rC, rWORD4, rSHR sld rF, rWORD4, rSHL or rWORD4, rC, rD ld rWORD5, 16(rSTR1) ld rWORD6, 16(rSTR2) cmpld cr1, rWORD3, rWORD4 bne cr0, L(duLcr0) srd rE, rWORD6, rSHR sld rH, rWORD6, rSHL or rWORD6, rE, rF ldu rWORD7, 24(rSTR1) ldu rWORD8, 24(rSTR2) cmpld cr6, rWORD5, rWORD6 bne cr1, L(duLcr1) srd rG, rWORD8, rSHR sld rB, rWORD8, rSHL or rWORD8, rG, rH cmpld cr5, rWORD7, rWORD8 bdz- L(du24) /* Adjust CTR as we start with +4 */ /* This is the primary loop */ .align 4 L(duLoop): ld rWORD1, 8(rSTR1) ld rWORD2, 8(rSTR2) cmpld cr1, rWORD3, rWORD4 bne cr6, L(duLcr6) srd rA, rWORD2, rSHR sld rD, rWORD2, rSHL or rWORD2, rA, rB L(duLoop1): ld rWORD3, 16(rSTR1) ld rWORD4, 16(rSTR2) cmpld cr6, rWORD5, rWORD6 bne cr5, L(duLcr5) srd rC, rWORD4, rSHR sld rF, rWORD4, rSHL or rWORD4, rC, rD L(duLoop2): ld rWORD5, 24(rSTR1) ld rWORD6, 24(rSTR2) cmpld cr5, rWORD7, rWORD8 bne cr0, L(duLcr0) srd rE, rWORD6, rSHR sld rH, rWORD6, rSHL or rWORD6, rE, rF L(duLoop3): ldu rWORD7, 32(rSTR1) ldu rWORD8, 32(rSTR2) cmpld cr0, rWORD1, rWORD2 bne- cr1, L(duLcr1) srd rG, rWORD8, rSHR sld rB, rWORD8, rSHL or rWORD8, rG, rH bdnz+ L(duLoop) L(duL4): bne cr1, L(duLcr1) cmpld cr1, rWORD3, rWORD4 bne cr6, L(duLcr6) cmpld cr6, rWORD5, rWORD6 bne cr5, L(duLcr5) cmpld cr5, rWORD7, rWORD8 L(du44): bne cr0, L(duLcr0) L(du34): bne cr1, L(duLcr1) L(du24): bne cr6, L(duLcr6) L(du14): sldi. rN, rN, 3 bne cr5, L(duLcr5) /* At this point we have a remainder of 1 to 7 bytes to compare. We use shift right double to elliminate bits beyond the compare length. This allows the use of double word subtract to compute the final result. However it may not be safe to load rWORD2 which may be beyond the string length. So we compare the bit length of the remainder to the right shift count (rSHR). If the bit count is less than or equal we do not need to load rWORD2 (all significant bits are already in rB). */ cmpld cr7, rN, rSHR beq L(duZeroReturn) li rA, 0 ble cr7, L(dutrim) ld rWORD2, 8(rSTR2) srd rA, rWORD2, rSHR .align 4 L(dutrim): ld rWORD1, 8(rSTR1) ld rWORD8,-8(r1) subfic rN, rN, 64 /* Shift count is 64 - (rN * 8). */ or rWORD2, rA, rB ld rWORD7,-16(r1) ld r29,-24(r1) srd rWORD1, rWORD1, rN srd rWORD2, rWORD2, rN ld r28,-32(r1) ld r27,-40(r1) li rRTN, 0 cmpld cr0, rWORD1, rWORD2 ld r26,-48(r1) ld r25,-56(r1) beq cr0, L(dureturn24) li rRTN, 1 ld r24,-64(r1) bgtlr cr0 li rRTN, -1 blr .align 4 L(duLcr0): ld rWORD8,-8(r1) ld rWORD7,-16(r1) li rRTN, 1 bgt cr0, L(dureturn29) ld r29,-24(r1) ld r28,-32(r1) li rRTN, -1 b L(dureturn27) .align 4 L(duLcr1): ld rWORD8,-8(r1) ld rWORD7,-16(r1) li rRTN, 1 bgt cr1, L(dureturn29) ld r29,-24(r1) ld r28,-32(r1) li rRTN, -1 b L(dureturn27) .align 4 L(duLcr6): ld rWORD8,-8(r1) ld rWORD7,-16(r1) li rRTN, 1 bgt cr6, L(dureturn29) ld r29,-24(r1) ld r28,-32(r1) li rRTN, -1 b L(dureturn27) .align 4 L(duLcr5): ld rWORD8,-8(r1) ld rWORD7,-16(r1) li rRTN, 1 bgt cr5, L(dureturn29) ld r29,-24(r1) ld r28,-32(r1) li rRTN, -1 b L(dureturn27) .align 3 L(duZeroReturn): li rRTN,0 .align 4 L(dureturn): ld rWORD8,-8(r1) ld rWORD7,-16(r1) L(dureturn29): ld r29,-24(r1) ld r28,-32(r1) L(dureturn27): ld r27,-40(r1) L(dureturn26): ld r26,-48(r1) L(dureturn25): ld r25,-56(r1) L(dureturn24): ld r24,-64(r1) blr L(duzeroLength): li rRTN,0 blr END (BP_SYM (memcmp)) libc_hidden_builtin_def (memcmp) weak_alias (memcmp, bcmp)