/* Copyright (C) 2002-2018 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 2002. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include #include #include "pthreadP.h" #include #include #include #ifndef lll_lock_elision #define lll_lock_elision(lock, try_lock, private) ({ \ lll_lock (lock, private); 0; }) #endif #ifndef lll_trylock_elision #define lll_trylock_elision(a,t) lll_trylock(a) #endif /* Some of the following definitions differ when pthread_mutex_cond_lock.c includes this file. */ #ifndef LLL_MUTEX_LOCK # define LLL_MUTEX_LOCK(mutex) \ lll_lock ((mutex)->__data.__lock, PTHREAD_MUTEX_PSHARED (mutex)) # define LLL_MUTEX_TRYLOCK(mutex) \ lll_trylock ((mutex)->__data.__lock) # define LLL_ROBUST_MUTEX_LOCK_MODIFIER 0 # define LLL_MUTEX_LOCK_ELISION(mutex) \ lll_lock_elision ((mutex)->__data.__lock, (mutex)->__data.__elision, \ PTHREAD_MUTEX_PSHARED (mutex)) # define LLL_MUTEX_TRYLOCK_ELISION(mutex) \ lll_trylock_elision((mutex)->__data.__lock, (mutex)->__data.__elision, \ PTHREAD_MUTEX_PSHARED (mutex)) #endif #ifndef FORCE_ELISION #define FORCE_ELISION(m, s) #endif static int __pthread_mutex_lock_full (pthread_mutex_t *mutex) __attribute_noinline__; int __pthread_mutex_lock (pthread_mutex_t *mutex) { unsigned int type = PTHREAD_MUTEX_TYPE_ELISION (mutex); LIBC_PROBE (mutex_entry, 1, mutex); if (__builtin_expect (type & ~(PTHREAD_MUTEX_KIND_MASK_NP | PTHREAD_MUTEX_ELISION_FLAGS_NP), 0)) return __pthread_mutex_lock_full (mutex); if (__glibc_likely (type == PTHREAD_MUTEX_TIMED_NP)) { FORCE_ELISION (mutex, goto elision); simple: /* Normal mutex. */ LLL_MUTEX_LOCK (mutex); assert (mutex->__data.__owner == 0); } #ifdef HAVE_ELISION else if (__glibc_likely (type == PTHREAD_MUTEX_TIMED_ELISION_NP)) { elision: __attribute__((unused)) /* This case can never happen on a system without elision, as the mutex type initialization functions will not allow to set the elision flags. */ /* Don't record owner or users for elision case. This is a tail call. */ return LLL_MUTEX_LOCK_ELISION (mutex); } #endif else if (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex) == PTHREAD_MUTEX_RECURSIVE_NP, 1)) { /* Recursive mutex. */ pid_t id = THREAD_GETMEM (THREAD_SELF, tid); /* Check whether we already hold the mutex. */ if (mutex->__data.__owner == id) { /* Just bump the counter. */ if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) /* Overflow of the counter. */ return EAGAIN; ++mutex->__data.__count; return 0; } /* We have to get the mutex. */ LLL_MUTEX_LOCK (mutex); assert (mutex->__data.__owner == 0); mutex->__data.__count = 1; } else if (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex) == PTHREAD_MUTEX_ADAPTIVE_NP, 1)) { if (! __is_smp) goto simple; if (LLL_MUTEX_TRYLOCK (mutex) != 0) { int cnt = 0; int max_cnt = MIN (MAX_ADAPTIVE_COUNT, mutex->__data.__spins * 2 + 10); do { if (cnt++ >= max_cnt) { LLL_MUTEX_LOCK (mutex); break; } atomic_spin_nop (); } while (LLL_MUTEX_TRYLOCK (mutex) != 0); mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8; } assert (mutex->__data.__owner == 0); } else { pid_t id = THREAD_GETMEM (THREAD_SELF, tid); assert (PTHREAD_MUTEX_TYPE (mutex) == PTHREAD_MUTEX_ERRORCHECK_NP); /* Check whether we already hold the mutex. */ if (__glibc_unlikely (mutex->__data.__owner == id)) return EDEADLK; goto simple; } pid_t id = THREAD_GETMEM (THREAD_SELF, tid); /* Record the ownership. */ mutex->__data.__owner = id; #ifndef NO_INCR ++mutex->__data.__nusers; #endif LIBC_PROBE (mutex_acquired, 1, mutex); return 0; } static int __pthread_mutex_lock_full (pthread_mutex_t *mutex) { int oldval; pid_t id = THREAD_GETMEM (THREAD_SELF, tid); switch (PTHREAD_MUTEX_TYPE (mutex)) { case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP: case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP: case PTHREAD_MUTEX_ROBUST_NORMAL_NP: case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP: THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, &mutex->__data.__list.__next); /* We need to set op_pending before starting the operation. Also see comments at ENQUEUE_MUTEX. */ __asm ("" ::: "memory"); oldval = mutex->__data.__lock; /* This is set to FUTEX_WAITERS iff we might have shared the FUTEX_WAITERS flag with other threads, and therefore need to keep it set to avoid lost wake-ups. We have the same requirement in the simple mutex algorithm. We start with value zero for a normal mutex, and FUTEX_WAITERS if we are building the special case mutexes for use from within condition variables. */ unsigned int assume_other_futex_waiters = LLL_ROBUST_MUTEX_LOCK_MODIFIER; while (1) { /* Try to acquire the lock through a CAS from 0 (not acquired) to our TID | assume_other_futex_waiters. */ if (__glibc_likely (oldval == 0)) { oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, id | assume_other_futex_waiters, 0); if (__glibc_likely (oldval == 0)) break; } if ((oldval & FUTEX_OWNER_DIED) != 0) { /* The previous owner died. Try locking the mutex. */ int newval = id; #ifdef NO_INCR /* We are not taking assume_other_futex_waiters into accoount here simply because we'll set FUTEX_WAITERS anyway. */ newval |= FUTEX_WAITERS; #else newval |= (oldval & FUTEX_WAITERS) | assume_other_futex_waiters; #endif newval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, newval, oldval); if (newval != oldval) { oldval = newval; continue; } /* We got the mutex. */ mutex->__data.__count = 1; /* But it is inconsistent unless marked otherwise. */ mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; /* We must not enqueue the mutex before we have acquired it. Also see comments at ENQUEUE_MUTEX. */ __asm ("" ::: "memory"); ENQUEUE_MUTEX (mutex); /* We need to clear op_pending after we enqueue the mutex. */ __asm ("" ::: "memory"); THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); /* Note that we deliberately exit here. If we fall through to the end of the function __nusers would be incremented which is not correct because the old owner has to be discounted. If we are not supposed to increment __nusers we actually have to decrement it here. */ #ifdef NO_INCR --mutex->__data.__nusers; #endif return EOWNERDEAD; } /* Check whether we already hold the mutex. */ if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) { int kind = PTHREAD_MUTEX_TYPE (mutex); if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP) { /* We do not need to ensure ordering wrt another memory access. Also see comments at ENQUEUE_MUTEX. */ THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); return EDEADLK; } if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP) { /* We do not need to ensure ordering wrt another memory access. */ THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); /* Just bump the counter. */ if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) /* Overflow of the counter. */ return EAGAIN; ++mutex->__data.__count; return 0; } } /* We cannot acquire the mutex nor has its owner died. Thus, try to block using futexes. Set FUTEX_WAITERS if necessary so that other threads are aware that there are potentially threads blocked on the futex. Restart if oldval changed in the meantime. */ if ((oldval & FUTEX_WAITERS) == 0) { if (atomic_compare_and_exchange_bool_acq (&mutex->__data.__lock, oldval | FUTEX_WAITERS, oldval) != 0) { oldval = mutex->__data.__lock; continue; } oldval |= FUTEX_WAITERS; } /* It is now possible that we share the FUTEX_WAITERS flag with another thread; therefore, update assume_other_futex_waiters so that we do not forget about this when handling other cases above and thus do not cause lost wake-ups. */ assume_other_futex_waiters |= FUTEX_WAITERS; /* Block using the futex and reload current lock value. */ lll_futex_wait (&mutex->__data.__lock, oldval, PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); oldval = mutex->__data.__lock; } /* We have acquired the mutex; check if it is still consistent. */ if (__builtin_expect (mutex->__data.__owner == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) { /* This mutex is now not recoverable. */ mutex->__data.__count = 0; int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex); lll_unlock (mutex->__data.__lock, private); /* FIXME This violates the mutex destruction requirements. See __pthread_mutex_unlock_full. */ THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); return ENOTRECOVERABLE; } mutex->__data.__count = 1; /* We must not enqueue the mutex before we have acquired it. Also see comments at ENQUEUE_MUTEX. */ __asm ("" ::: "memory"); ENQUEUE_MUTEX (mutex); /* We need to clear op_pending after we enqueue the mutex. */ __asm ("" ::: "memory"); THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); break; /* The PI support requires the Linux futex system call. If that's not available, pthread_mutex_init should never have allowed the type to be set. So it will get the default case for an invalid type. */ #ifdef __NR_futex case PTHREAD_MUTEX_PI_RECURSIVE_NP: case PTHREAD_MUTEX_PI_ERRORCHECK_NP: case PTHREAD_MUTEX_PI_NORMAL_NP: case PTHREAD_MUTEX_PI_ADAPTIVE_NP: case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP: case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP: case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP: case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP: { int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP; if (robust) { /* Note: robust PI futexes are signaled by setting bit 0. */ THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, (void *) (((uintptr_t) &mutex->__data.__list.__next) | 1)); /* We need to set op_pending before starting the operation. Also see comments at ENQUEUE_MUTEX. */ __asm ("" ::: "memory"); } oldval = mutex->__data.__lock; /* Check whether we already hold the mutex. */ if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) { if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) { /* We do not need to ensure ordering wrt another memory access. */ THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); return EDEADLK; } if (kind == PTHREAD_MUTEX_RECURSIVE_NP) { /* We do not need to ensure ordering wrt another memory access. */ THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); /* Just bump the counter. */ if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) /* Overflow of the counter. */ return EAGAIN; ++mutex->__data.__count; return 0; } } int newval = id; # ifdef NO_INCR newval |= FUTEX_WAITERS; # endif oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, newval, 0); if (oldval != 0) { /* The mutex is locked. The kernel will now take care of everything. */ int private = (robust ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex) : PTHREAD_MUTEX_PSHARED (mutex)); INTERNAL_SYSCALL_DECL (__err); int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, __lll_private_flag (FUTEX_LOCK_PI, private), 1, 0); if (INTERNAL_SYSCALL_ERROR_P (e, __err) && (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH || INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK)) { assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK || (kind != PTHREAD_MUTEX_ERRORCHECK_NP && kind != PTHREAD_MUTEX_RECURSIVE_NP)); /* ESRCH can happen only for non-robust PI mutexes where the owner of the lock died. */ assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH || !robust); /* Delay the thread indefinitely. */ while (1) __pause_nocancel (); } oldval = mutex->__data.__lock; assert (robust || (oldval & FUTEX_OWNER_DIED) == 0); } if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED)) { atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED); /* We got the mutex. */ mutex->__data.__count = 1; /* But it is inconsistent unless marked otherwise. */ mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; /* We must not enqueue the mutex before we have acquired it. Also see comments at ENQUEUE_MUTEX. */ __asm ("" ::: "memory"); ENQUEUE_MUTEX_PI (mutex); /* We need to clear op_pending after we enqueue the mutex. */ __asm ("" ::: "memory"); THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); /* Note that we deliberately exit here. If we fall through to the end of the function __nusers would be incremented which is not correct because the old owner has to be discounted. If we are not supposed to increment __nusers we actually have to decrement it here. */ # ifdef NO_INCR --mutex->__data.__nusers; # endif return EOWNERDEAD; } if (robust && __builtin_expect (mutex->__data.__owner == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) { /* This mutex is now not recoverable. */ mutex->__data.__count = 0; INTERNAL_SYSCALL_DECL (__err); INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, __lll_private_flag (FUTEX_UNLOCK_PI, PTHREAD_ROBUST_MUTEX_PSHARED (mutex)), 0, 0); /* To the kernel, this will be visible after the kernel has acquired the mutex in the syscall. */ THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); return ENOTRECOVERABLE; } mutex->__data.__count = 1; if (robust) { /* We must not enqueue the mutex before we have acquired it. Also see comments at ENQUEUE_MUTEX. */ __asm ("" ::: "memory"); ENQUEUE_MUTEX_PI (mutex); /* We need to clear op_pending after we enqueue the mutex. */ __asm ("" ::: "memory"); THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); } } break; #endif /* __NR_futex. */ case PTHREAD_MUTEX_PP_RECURSIVE_NP: case PTHREAD_MUTEX_PP_ERRORCHECK_NP: case PTHREAD_MUTEX_PP_NORMAL_NP: case PTHREAD_MUTEX_PP_ADAPTIVE_NP: { int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; oldval = mutex->__data.__lock; /* Check whether we already hold the mutex. */ if (mutex->__data.__owner == id) { if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) return EDEADLK; if (kind == PTHREAD_MUTEX_RECURSIVE_NP) { /* Just bump the counter. */ if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) /* Overflow of the counter. */ return EAGAIN; ++mutex->__data.__count; return 0; } } int oldprio = -1, ceilval; do { int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT; if (__pthread_current_priority () > ceiling) { if (oldprio != -1) __pthread_tpp_change_priority (oldprio, -1); return EINVAL; } int retval = __pthread_tpp_change_priority (oldprio, ceiling); if (retval) return retval; ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT; oldprio = ceiling; oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, #ifdef NO_INCR ceilval | 2, #else ceilval | 1, #endif ceilval); if (oldval == ceilval) break; do { oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, ceilval | 2, ceilval | 1); if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval) break; if (oldval != ceilval) lll_futex_wait (&mutex->__data.__lock, ceilval | 2, PTHREAD_MUTEX_PSHARED (mutex)); } while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, ceilval | 2, ceilval) != ceilval); } while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval); assert (mutex->__data.__owner == 0); mutex->__data.__count = 1; } break; default: /* Correct code cannot set any other type. */ return EINVAL; } /* Record the ownership. */ mutex->__data.__owner = id; #ifndef NO_INCR ++mutex->__data.__nusers; #endif LIBC_PROBE (mutex_acquired, 1, mutex); return 0; } #ifndef __pthread_mutex_lock weak_alias (__pthread_mutex_lock, pthread_mutex_lock) hidden_def (__pthread_mutex_lock) #endif #ifdef NO_INCR void __pthread_mutex_cond_lock_adjust (pthread_mutex_t *mutex) { assert ((mutex->__data.__kind & PTHREAD_MUTEX_PRIO_INHERIT_NP) != 0); assert ((mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP) == 0); assert ((mutex->__data.__kind & PTHREAD_MUTEX_PSHARED_BIT) == 0); /* Record the ownership. */ pid_t id = THREAD_GETMEM (THREAD_SELF, tid); mutex->__data.__owner = id; if (mutex->__data.__kind == PTHREAD_MUTEX_PI_RECURSIVE_NP) ++mutex->__data.__count; } #endif