/* Complex square root of a float type. Copyright (C) 1997-2018 Free Software Foundation, Inc. This file is part of the GNU C Library. Based on an algorithm by Stephen L. Moshier . Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include CFLOAT M_DECL_FUNC (__csqrt) (CFLOAT x) { CFLOAT res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE)) { if (icls == FP_INFINITE) { __real__ res = M_HUGE_VAL; __imag__ res = __imag__ x; } else if (rcls == FP_INFINITE) { if (__real__ x < 0) { __real__ res = icls == FP_NAN ? M_NAN : 0; __imag__ res = M_COPYSIGN (M_HUGE_VAL, __imag__ x); } else { __real__ res = __real__ x; __imag__ res = (icls == FP_NAN ? M_NAN : M_COPYSIGN (0, __imag__ x)); } } else { __real__ res = M_NAN; __imag__ res = M_NAN; } } else { if (__glibc_unlikely (icls == FP_ZERO)) { if (__real__ x < 0) { __real__ res = 0; __imag__ res = M_COPYSIGN (M_SQRT (-__real__ x), __imag__ x); } else { __real__ res = M_FABS (M_SQRT (__real__ x)); __imag__ res = M_COPYSIGN (0, __imag__ x); } } else if (__glibc_unlikely (rcls == FP_ZERO)) { FLOAT r; if (M_FABS (__imag__ x) >= 2 * M_MIN) r = M_SQRT (M_LIT (0.5) * M_FABS (__imag__ x)); else r = M_LIT (0.5) * M_SQRT (2 * M_FABS (__imag__ x)); __real__ res = r; __imag__ res = M_COPYSIGN (r, __imag__ x); } else { FLOAT d, r, s; int scale = 0; if (M_FABS (__real__ x) > M_MAX / 4) { scale = 1; __real__ x = M_SCALBN (__real__ x, -2 * scale); __imag__ x = M_SCALBN (__imag__ x, -2 * scale); } else if (M_FABS (__imag__ x) > M_MAX / 4) { scale = 1; if (M_FABS (__real__ x) >= 4 * M_MIN) __real__ x = M_SCALBN (__real__ x, -2 * scale); else __real__ x = 0; __imag__ x = M_SCALBN (__imag__ x, -2 * scale); } else if (M_FABS (__real__ x) < 2 * M_MIN && M_FABS (__imag__ x) < 2 * M_MIN) { scale = -((M_MANT_DIG + 1) / 2); __real__ x = M_SCALBN (__real__ x, -2 * scale); __imag__ x = M_SCALBN (__imag__ x, -2 * scale); } d = M_HYPOT (__real__ x, __imag__ x); /* Use the identity 2 Re res Im res = Im x to avoid cancellation error in d +/- Re x. */ if (__real__ x > 0) { r = M_SQRT (M_LIT (0.5) * (d + __real__ x)); if (scale == 1 && M_FABS (__imag__ x) < 1) { /* Avoid possible intermediate underflow. */ s = __imag__ x / r; r = M_SCALBN (r, scale); scale = 0; } else s = M_LIT (0.5) * (__imag__ x / r); } else { s = M_SQRT (M_LIT (0.5) * (d - __real__ x)); if (scale == 1 && M_FABS (__imag__ x) < 1) { /* Avoid possible intermediate underflow. */ r = M_FABS (__imag__ x / s); s = M_SCALBN (s, scale); scale = 0; } else r = M_FABS (M_LIT (0.5) * (__imag__ x / s)); } if (scale) { r = M_SCALBN (r, scale); s = M_SCALBN (s, scale); } math_check_force_underflow (r); math_check_force_underflow (s); __real__ res = r; __imag__ res = M_COPYSIGN (s, __imag__ x); } } return res; } declare_mgen_alias (__csqrt, csqrt)