/* Complex sine function for double. Copyright (C) 1997-2015 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include __complex__ double __csin (__complex__ double x) { __complex__ double retval; int negate = signbit (__real__ x); int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); __real__ x = fabs (__real__ x); if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ if (__glibc_likely (rcls >= FP_ZERO)) { /* Real part is finite. */ const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2); double sinix, cosix; if (__glibc_likely (rcls != FP_SUBNORMAL)) { __sincos (__real__ x, &sinix, &cosix); } else { sinix = __real__ x; cosix = 1.0; } if (fabs (__imag__ x) > t) { double exp_t = __ieee754_exp (t); double ix = fabs (__imag__ x); if (signbit (__imag__ x)) cosix = -cosix; ix -= t; sinix *= exp_t / 2.0; cosix *= exp_t / 2.0; if (ix > t) { ix -= t; sinix *= exp_t; cosix *= exp_t; } if (ix > t) { /* Overflow (original imaginary part of x > 3t). */ __real__ retval = DBL_MAX * sinix; __imag__ retval = DBL_MAX * cosix; } else { double exp_val = __ieee754_exp (ix); __real__ retval = exp_val * sinix; __imag__ retval = exp_val * cosix; } } else { __real__ retval = __ieee754_cosh (__imag__ x) * sinix; __imag__ retval = __ieee754_sinh (__imag__ x) * cosix; } if (negate) __real__ retval = -__real__ retval; if (fabs (__real__ retval) < DBL_MIN) { volatile double force_underflow = __real__ retval * __real__ retval; (void) force_underflow; } if (fabs (__imag__ retval) < DBL_MIN) { volatile double force_underflow = __imag__ retval * __imag__ retval; (void) force_underflow; } } else { if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = __nan (""); __imag__ retval = __imag__ x; if (rcls == FP_INFINITE) feraiseexcept (FE_INVALID); } else { __real__ retval = __nan (""); __imag__ retval = __nan (""); feraiseexcept (FE_INVALID); } } } else if (icls == FP_INFINITE) { /* Imaginary part is infinite. */ if (rcls == FP_ZERO) { /* Real part is 0.0. */ __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0); __imag__ retval = __imag__ x; } else if (rcls > FP_ZERO) { /* Real part is finite. */ double sinix, cosix; if (__glibc_likely (rcls != FP_SUBNORMAL)) { __sincos (__real__ x, &sinix, &cosix); } else { sinix = __real__ x; cosix = 1.0; } __real__ retval = __copysign (HUGE_VAL, sinix); __imag__ retval = __copysign (HUGE_VAL, cosix); if (negate) __real__ retval = -__real__ retval; if (signbit (__imag__ x)) __imag__ retval = -__imag__ retval; } else { /* The addition raises the invalid exception. */ __real__ retval = __nan (""); __imag__ retval = HUGE_VAL; if (rcls == FP_INFINITE) feraiseexcept (FE_INVALID); } } else { if (rcls == FP_ZERO) __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0); else __real__ retval = __nan (""); __imag__ retval = __nan (""); } return retval; } weak_alias (__csin, csin) #ifdef NO_LONG_DOUBLE strong_alias (__csin, __csinl) weak_alias (__csin, csinl) #endif