/* Compute complex natural logarithm. Copyright (C) 1997-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include /* To avoid spurious underflows, use this definition to treat IBM long double as approximating an IEEE-style format. */ #if LDBL_MANT_DIG == 106 # undef LDBL_EPSILON # define LDBL_EPSILON 0x1p-106L #endif __complex__ long double __clogl (__complex__ long double x) { __complex__ long double result; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) { /* Real and imaginary part are 0.0. */ __imag__ result = signbit (__real__ x) ? M_PIl : 0.0; __imag__ result = __copysignl (__imag__ result, __imag__ x); /* Yes, the following line raises an exception. */ __real__ result = -1.0 / fabsl (__real__ x); } else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN)) { /* Neither real nor imaginary part is NaN. */ long double absx = fabsl (__real__ x), absy = fabsl (__imag__ x); int scale = 0; if (absx < absy) { long double t = absx; absx = absy; absy = t; } if (absx > LDBL_MAX / 2.0L) { scale = -1; absx = __scalbnl (absx, scale); absy = (absy >= LDBL_MIN * 2.0L ? __scalbnl (absy, scale) : 0.0L); } else if (absx < LDBL_MIN && absy < LDBL_MIN) { scale = LDBL_MANT_DIG; absx = __scalbnl (absx, scale); absy = __scalbnl (absy, scale); } if (absx == 1.0L && scale == 0) { __real__ result = __log1pl (absy * absy) / 2.0L; math_check_force_underflow_nonneg (__real__ result); } else if (absx > 1.0L && absx < 2.0L && absy < 1.0L && scale == 0) { long double d2m1 = (absx - 1.0L) * (absx + 1.0L); if (absy >= LDBL_EPSILON) d2m1 += absy * absy; __real__ result = __log1pl (d2m1) / 2.0L; } else if (absx < 1.0L && absx >= 0.5L && absy < LDBL_EPSILON / 2.0L && scale == 0) { long double d2m1 = (absx - 1.0L) * (absx + 1.0L); __real__ result = __log1pl (d2m1) / 2.0L; } else if (absx < 1.0L && absx >= 0.5L && scale == 0 && absx * absx + absy * absy >= 0.5L) { long double d2m1 = __x2y2m1l (absx, absy); __real__ result = __log1pl (d2m1) / 2.0L; } else { long double d = __ieee754_hypotl (absx, absy); __real__ result = __ieee754_logl (d) - scale * M_LN2l; } __imag__ result = __ieee754_atan2l (__imag__ x, __real__ x); } else { __imag__ result = __nanl (""); if (rcls == FP_INFINITE || icls == FP_INFINITE) /* Real or imaginary part is infinite. */ __real__ result = HUGE_VALL; else __real__ result = __nanl (""); } return result; } weak_alias (__clogl, clogl)