/* Return arc hyperbole sine for long double value, with the imaginary part of the result possibly adjusted for use in computing other functions. Copyright (C) 1997-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include /* To avoid spurious overflows, use this definition to treat IBM long double as approximating an IEEE-style format. */ #if LDBL_MANT_DIG == 106 # undef LDBL_EPSILON # define LDBL_EPSILON 0x1p-106L #endif /* Return the complex inverse hyperbolic sine of finite nonzero Z, with the imaginary part of the result subtracted from pi/2 if ADJ is nonzero. */ __complex__ long double __kernel_casinhl (__complex__ long double x, int adj) { __complex__ long double res; long double rx, ix; __complex__ long double y; /* Avoid cancellation by reducing to the first quadrant. */ rx = fabsl (__real__ x); ix = fabsl (__imag__ x); if (rx >= 1.0L / LDBL_EPSILON || ix >= 1.0L / LDBL_EPSILON) { /* For large x in the first quadrant, x + csqrt (1 + x * x) is sufficiently close to 2 * x to make no significant difference to the result; avoid possible overflow from the squaring and addition. */ __real__ y = rx; __imag__ y = ix; if (adj) { long double t = __real__ y; __real__ y = __copysignl (__imag__ y, __imag__ x); __imag__ y = t; } res = __clogl (y); __real__ res += M_LN2l; } else if (rx >= 0.5L && ix < LDBL_EPSILON / 8.0L) { long double s = __ieee754_hypotl (1.0L, rx); __real__ res = __ieee754_logl (rx + s); if (adj) __imag__ res = __ieee754_atan2l (s, __imag__ x); else __imag__ res = __ieee754_atan2l (ix, s); } else if (rx < LDBL_EPSILON / 8.0L && ix >= 1.5L) { long double s = __ieee754_sqrtl ((ix + 1.0L) * (ix - 1.0L)); __real__ res = __ieee754_logl (ix + s); if (adj) __imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x)); else __imag__ res = __ieee754_atan2l (s, rx); } else if (ix > 1.0L && ix < 1.5L && rx < 0.5L) { if (rx < LDBL_EPSILON * LDBL_EPSILON) { long double ix2m1 = (ix + 1.0L) * (ix - 1.0L); long double s = __ieee754_sqrtl (ix2m1); __real__ res = __log1pl (2.0L * (ix2m1 + ix * s)) / 2.0L; if (adj) __imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x)); else __imag__ res = __ieee754_atan2l (s, rx); } else { long double ix2m1 = (ix + 1.0L) * (ix - 1.0L); long double rx2 = rx * rx; long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix); long double d = __ieee754_sqrtl (ix2m1 * ix2m1 + f); long double dp = d + ix2m1; long double dm = f / dp; long double r1 = __ieee754_sqrtl ((dm + rx2) / 2.0L); long double r2 = rx * ix / r1; __real__ res = __log1pl (rx2 + dp + 2.0L * (rx * r1 + ix * r2)) / 2.0L; if (adj) __imag__ res = __ieee754_atan2l (rx + r1, __copysignl (ix + r2, __imag__ x)); else __imag__ res = __ieee754_atan2l (ix + r2, rx + r1); } } else if (ix == 1.0L && rx < 0.5L) { if (rx < LDBL_EPSILON / 8.0L) { __real__ res = __log1pl (2.0L * (rx + __ieee754_sqrtl (rx))) / 2.0L; if (adj) __imag__ res = __ieee754_atan2l (__ieee754_sqrtl (rx), __copysignl (1.0L, __imag__ x)); else __imag__ res = __ieee754_atan2l (1.0L, __ieee754_sqrtl (rx)); } else { long double d = rx * __ieee754_sqrtl (4.0L + rx * rx); long double s1 = __ieee754_sqrtl ((d + rx * rx) / 2.0L); long double s2 = __ieee754_sqrtl ((d - rx * rx) / 2.0L); __real__ res = __log1pl (rx * rx + d + 2.0L * (rx * s1 + s2)) / 2.0L; if (adj) __imag__ res = __ieee754_atan2l (rx + s1, __copysignl (1.0L + s2, __imag__ x)); else __imag__ res = __ieee754_atan2l (1.0L + s2, rx + s1); } } else if (ix < 1.0L && rx < 0.5L) { if (ix >= LDBL_EPSILON) { if (rx < LDBL_EPSILON * LDBL_EPSILON) { long double onemix2 = (1.0L + ix) * (1.0L - ix); long double s = __ieee754_sqrtl (onemix2); __real__ res = __log1pl (2.0L * rx / s) / 2.0L; if (adj) __imag__ res = __ieee754_atan2l (s, __imag__ x); else __imag__ res = __ieee754_atan2l (ix, s); } else { long double onemix2 = (1.0L + ix) * (1.0L - ix); long double rx2 = rx * rx; long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix); long double d = __ieee754_sqrtl (onemix2 * onemix2 + f); long double dp = d + onemix2; long double dm = f / dp; long double r1 = __ieee754_sqrtl ((dp + rx2) / 2.0L); long double r2 = rx * ix / r1; __real__ res = __log1pl (rx2 + dm + 2.0L * (rx * r1 + ix * r2)) / 2.0L; if (adj) __imag__ res = __ieee754_atan2l (rx + r1, __copysignl (ix + r2, __imag__ x)); else __imag__ res = __ieee754_atan2l (ix + r2, rx + r1); } } else { long double s = __ieee754_hypotl (1.0L, rx); __real__ res = __log1pl (2.0L * rx * (rx + s)) / 2.0L; if (adj) __imag__ res = __ieee754_atan2l (s, __imag__ x); else __imag__ res = __ieee754_atan2l (ix, s); } math_check_force_underflow_nonneg (__real__ res); } else { __real__ y = (rx - ix) * (rx + ix) + 1.0L; __imag__ y = 2.0L * rx * ix; y = __csqrtl (y); __real__ y += rx; __imag__ y += ix; if (adj) { long double t = __real__ y; __real__ y = __copysignl (__imag__ y, __imag__ x); __imag__ y = t; } res = __clogl (y); } /* Give results the correct sign for the original argument. */ __real__ res = __copysignl (__real__ res, __real__ x); __imag__ res = __copysignl (__imag__ res, (adj ? 1.0L : __imag__ x)); return res; }