/* Return arc hyperbole sine for float value, with the imaginary part of the result possibly adjusted for use in computing other functions. Copyright (C) 1997-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include /* Return the complex inverse hyperbolic sine of finite nonzero Z, with the imaginary part of the result subtracted from pi/2 if ADJ is nonzero. */ __complex__ float __kernel_casinhf (__complex__ float x, int adj) { __complex__ float res; float rx, ix; __complex__ float y; /* Avoid cancellation by reducing to the first quadrant. */ rx = fabsf (__real__ x); ix = fabsf (__imag__ x); if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON) { /* For large x in the first quadrant, x + csqrt (1 + x * x) is sufficiently close to 2 * x to make no significant difference to the result; avoid possible overflow from the squaring and addition. */ __real__ y = rx; __imag__ y = ix; if (adj) { float t = __real__ y; __real__ y = __copysignf (__imag__ y, __imag__ x); __imag__ y = t; } res = __clogf (y); __real__ res += (float) M_LN2; } else if (rx >= 0.5f && ix < FLT_EPSILON / 8.0f) { float s = __ieee754_hypotf (1.0f, rx); __real__ res = __ieee754_logf (rx + s); if (adj) __imag__ res = __ieee754_atan2f (s, __imag__ x); else __imag__ res = __ieee754_atan2f (ix, s); } else if (rx < FLT_EPSILON / 8.0f && ix >= 1.5f) { float s = __ieee754_sqrtf ((ix + 1.0f) * (ix - 1.0f)); __real__ res = __ieee754_logf (ix + s); if (adj) __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); else __imag__ res = __ieee754_atan2f (s, rx); } else if (ix > 1.0f && ix < 1.5f && rx < 0.5f) { if (rx < FLT_EPSILON * FLT_EPSILON) { float ix2m1 = (ix + 1.0f) * (ix - 1.0f); float s = __ieee754_sqrtf (ix2m1); __real__ res = __log1pf (2.0f * (ix2m1 + ix * s)) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); else __imag__ res = __ieee754_atan2f (s, rx); } else { float ix2m1 = (ix + 1.0f) * (ix - 1.0f); float rx2 = rx * rx; float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); float d = __ieee754_sqrtf (ix2m1 * ix2m1 + f); float dp = d + ix2m1; float dm = f / dp; float r1 = __ieee754_sqrtf ((dm + rx2) / 2.0f); float r2 = rx * ix / r1; __real__ res = __log1pf (rx2 + dp + 2.0f * (rx * r1 + ix * r2)) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (rx + r1, __copysignf (ix + r2, __imag__ x)); else __imag__ res = __ieee754_atan2f (ix + r2, rx + r1); } } else if (ix == 1.0f && rx < 0.5f) { if (rx < FLT_EPSILON / 8.0f) { __real__ res = __log1pf (2.0f * (rx + __ieee754_sqrtf (rx))) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (__ieee754_sqrtf (rx), __copysignf (1.0f, __imag__ x)); else __imag__ res = __ieee754_atan2f (1.0f, __ieee754_sqrtf (rx)); } else { float d = rx * __ieee754_sqrtf (4.0f + rx * rx); float s1 = __ieee754_sqrtf ((d + rx * rx) / 2.0f); float s2 = __ieee754_sqrtf ((d - rx * rx) / 2.0f); __real__ res = __log1pf (rx * rx + d + 2.0f * (rx * s1 + s2)) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (rx + s1, __copysignf (1.0f + s2, __imag__ x)); else __imag__ res = __ieee754_atan2f (1.0f + s2, rx + s1); } } else if (ix < 1.0f && rx < 0.5f) { if (ix >= FLT_EPSILON) { if (rx < FLT_EPSILON * FLT_EPSILON) { float onemix2 = (1.0f + ix) * (1.0f - ix); float s = __ieee754_sqrtf (onemix2); __real__ res = __log1pf (2.0f * rx / s) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (s, __imag__ x); else __imag__ res = __ieee754_atan2f (ix, s); } else { float onemix2 = (1.0f + ix) * (1.0f - ix); float rx2 = rx * rx; float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); float d = __ieee754_sqrtf (onemix2 * onemix2 + f); float dp = d + onemix2; float dm = f / dp; float r1 = __ieee754_sqrtf ((dp + rx2) / 2.0f); float r2 = rx * ix / r1; __real__ res = __log1pf (rx2 + dm + 2.0f * (rx * r1 + ix * r2)) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (rx + r1, __copysignf (ix + r2, __imag__ x)); else __imag__ res = __ieee754_atan2f (ix + r2, rx + r1); } } else { float s = __ieee754_hypotf (1.0f, rx); __real__ res = __log1pf (2.0f * rx * (rx + s)) / 2.0f; if (adj) __imag__ res = __ieee754_atan2f (s, __imag__ x); else __imag__ res = __ieee754_atan2f (ix, s); } math_check_force_underflow_nonneg (__real__ res); } else { __real__ y = (rx - ix) * (rx + ix) + 1.0f; __imag__ y = 2.0f * rx * ix; y = __csqrtf (y); __real__ y += rx; __imag__ y += ix; if (adj) { float t = __real__ y; __real__ y = __copysignf (__imag__ y, __imag__ x); __imag__ y = t; } res = __clogf (y); } /* Give results the correct sign for the original argument. */ __real__ res = __copysignf (__real__ res, __real__ x); __imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x)); return res; }